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We consider using the J-test procedure for the non-nested model selection problem between the spatial
autoregressive (SAR) model and the matrix exponential spatial specification (MESS) model. The 2SLS and
GMM methods are used to implement the J-test procedure and derive several test statistics under the GMM
framework. We investigate the behavior of those J-test statistics in terms of pseudo true values. We extend
the J-test procedure into the setting when error terms in the model are with unknown heteroskedasticity.
Monte Carlo results suggest with strong spatial dependence the J-test statistics can have good power to distin-
guish the SAR and MESS models.

© 2012 Elsevier B.V. All rights reserved.
2 As pointed out by a referee, in the face of no spatial dependence, both the SAR and
1. Introduction

Spatial econometric models applied in regional science and geog-
raphy have been receiving more attention in various areas of eco-
nomics. The most popular spatial econometric model is the spatial
autoregressive (SAR) model. The SAR model implies a geometrical
decline pattern of spillover effects or externalities from levels of
neighbors in its reduced form.1 There are other models which display
different patterns of spillover effects or spatial externalities. Recently,
LeSage and Pace (2007) introduce thematrix exponential spatial spec-
ification (MESS)model, which exhibits an exponential decline pattern
of spatial externalities. The MESS model can produce estimates and
inferences similar to those from the SAR model and it is computation-
ally simpler. LeSage and Pace regard it as a substitute for the SAR
model. However, with different features in their reduced forms, the
two models cannot be perfect substitutes for each other. In practice,
there is usually no formal theoretical guidance for which pattern
of spatial externalities we should select to use. We are facing a
ree for their helpful comments.
+1 614 292 3906.
77@osu.edu (L. Lee).
tial econometric models can be

rights reserved.
non-nested model selection or testing problem among competitive
models. Hence, it is of interest to construct a model discrimination
procedure for them.2

For model selection among non-nested models, both classical ap-
proach and Bayesian approach are available in the literature. Bayesian
model comparison procedure involves calculating and comparing
the posterior probabilities of competitive models (Zellner, 1971)
and is feasible for competitive non-nested models.3 LeSage and Pace
(2007) derive expressions for the log marginal likelihood of the
MESS model, which could be used to produce Bayesian model com-
parison procedures for the SAR model and the MESS model.4 For
the classical approach, the J-test is a well-known test procedure for
MESS models collapse to independent linear models. Therefore it would be difficult to
distinguish between spatial model specifications in the absence of dependence for any
model comparison procedure. This is also confirmed by the Monte Carlo results for the
classical J-test in this paper. With strong spatial dependence, the J-test statistics can
have good power to distinguish between the two models. However, the powers of
the test statistics decrease when we only have moderate spatial dependence.

3 For more discussions regarding Bayesian model comparison procedures for spatial
models, see, for example, Hepple (1995a,b), LeSage and Parent (2007) and LeSage and
Pace (2009).

4 We thank a referee for pointing out this.
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testing of non-nested models in a non-spatial content.5 Davidson and
MacKinnon (1981) propose a J-test procedure based on the com-
prehensive approach advocated by Atkinson (1970) for model selec-
tion among non-nested univariate linear and non-linear regression
models. They also consider a linearized version of the J-test (the
so-called P-test) for non-linear models if the computations are diffi-
cult. Since then, various extensions of the J-test, discussions of their
finite sample properties and the corresponding bootstrap tests have
appeared in the literature.6 Furthermore, the J-test and its extensions
can be derived as linear approximations to the Cox test statistic7

(Pesaran and Weeks, 2001). Compared with other non-nested tests,
it is both conceptually and computationally simpler (Davidson and
MacKinnon, 1982). Therefore, it is relatively easy to implement in
practice. Recently, Kelejian (2008) extends the J-test procedure into
the spatial setting. His concern is to test competitive SAR models
with different spatial weight matrices. The J-test in Kelejian (2008)
is based on a Wald test statistic constructed from the 2SLS esti-
mation of an augmented model. Kelejian and Piras (2011) modify
the J-test in Kelejian (2008) by using available information in a
more efficient way. Burridge (2012) improves the J-test in Kelejian
(2008) by using the quasi-maximum likelihood estimation. Liu et al.
(2011) extend the J-test in Kelejian (2008) to differentiate between
two different social network models. Piras and Lozano-Gracia
(2012), Burridge (2012), and Liu et al. (2011) evaluate the finite
sample performance of their J-tests in Monte Carlo studies. Burridge
and Fingleton (2010), and Burridge (2012) also conduct bootstrap
J-tests to investigate finite sample properties of their J-test statistics.

In this paper we consider a J-test procedure in model selection be-
tween the SAR model and the competing MESS model. Our work is
distinct from these studies in several ways. Firstly, our focus is to se-
lect an appropriate pattern of spatial externalities, rather than select a
spatial weight matrix. Secondly, we consider the GMMmethod in Lee
(2007) in addition to the 2SLS method in Kelejian and Prucha (1998)
to estimate the augmented model and to set up test statistics. Thirdly,
we construct the gradient (G) test statistic and the distance difference
(DD) test statistic developed by Newey and West (1987), in addition
to the Wald test statistic. Finally, we extend the spatial J-test proce-
dure into the setting when error terms in the model are independent
but with unknown heteroskedasticity. We provide rigorous statistical
analysis for our test statistics in terms of pseudo true values of
misspecified models under each of the null hypotheses.

The paper is organized as follows: Section 2 specifies the SAR
and MESS models and considers the corresponding model selection
problem. Section 3 discusses J-test procedures. We consider both
the 2SLS and GMM estimation of the augmented model. Test statistics
are constructed and their asymptotic distributions are analyzed.
Section 4 extends J-test procedures into the setting when error
terms in the model are independent but with unknown hetero-
skedasticity. Section 5 summarizes Monte Carlo results to illustrate
some finite sample properties of the J-test statistics. Conclusions
are drawn in Section 6. Technical details and tables are given in the
Appendix.
5 The J-test is not the only non-nested test that has been proposed in the literature.
Several tests have been proposed based on Cox's two classic papers (Cox, 1961, 1962).
There are also other non-nested tests based on the encompassing approach developed
by Deaton (1982), Dastoor (1983) and Mizon and Richard (1986). For more discus-
sions, see Pesaran and Weeks (2001).

6 See, for example, Fisher and McAleer (1981), Davidson and MacKinnon (1982,
1983), Godfrey (1983, 1998), Davidson and MacKinnon (2002a, 2002b), Pesaran and
Weeks (2001), Gourieroux and Monfort (1994) and the review in Davidson and
MacKinnon (2004), pp. 665–675.

7 The Cox test is based upon the pioneering work of Cox (1961, 1962). Cox extends
the idea of a likelihood ratio test for non-nested models. For more discussions, see, for
example, Pesaran (1974), Godfrey and Pesaran (1983), Pesaran and Weeks (2001) and
Pesaran and Dupleich Ulloa (2008).
2. The models

The spatial autoregressive (SAR) model under consideration is

Yn ¼ λWnYn þ Xnβ þ Vn; ð2:1Þ

where Xn is a n×k dimensional matrix of nonstochastic exogenous
variables including the intercept term. Wn is a spatial weight matrix
with a zero diagonal consisting of known constants. We impose the
following basic assumptions about the SAR model:

Assumption 2.1. The vni's in Vn=(vn1, vn2, …, vnn)′ are i.i.d with zero
mean, variance σ 2 and that a moment of order higher than the fourth
exists.

Assumption 2.2. The elements of Xn are uniformly bounded constants.
Xn has the full rank k and limn→∞1

nX
′
nXn exists and is nonsingular.

Assumption 2.3. The spatial weights matrices {Wn} are uniformly
bounded in both row and column sums in absolute value.

Assumption 2.4. The matrix In−λWn is nonsingular for all λ in a
compact parameter space Λ . In addition, (In−λWn)−1 is uniformly
bounded in both row and column sums in absolute value for all λ uni-
formly in Λ .

Assumption 2.1–2.3 are conventional regularity conditions for the
SAR model. In particular, it will ensure finite variances for quadratic
forms of Vn used in the GMM estimation. The higher than fourth mo-
ment condition is needed in order to apply a central limit theorem in
Kelejian and Prucha (2001). The strong Assumption 2.4 is needed for
the SARmodel to ensure in particular that the variances of Yn's remain
bounded for large n. Furthermore, under Assumption 2.4, the reduced
form of the SAR model reviews its implication in spatial externalities:

Yn ¼ Xnβ þ
X∞
m¼1

Wm
n Xnλ

mβ þ In−λWnð Þ−1Vn: ð2:2Þ

Here the nonzero elements of rows of Wn
m with m≥1 represent

mth order contiguous neighbors.8 Then the specification (2.2) has
spillover effects or externalities generated by the regressors x's from
one's different level of neighbors being geometrically declining.

As an alternative to the SAR specification, LeSage and Pace (2007)
introduce the MESS model with the specification Sn

ex(μ)Yn=Xnβex+Vn,
of which the reduced form is

Yn ¼ Sex
n μð Þ−1Xnβ

ex þ Sex
n μð Þ−1Vn; ð2:3Þ

where Sex
n μð Þ ¼ eμWn ¼ In þ∑∞

t¼1
1
t! μWnð Þt .9 The model introduces an

exponential decay pattern of spatial externalities. As emphasized by
LeSage and Pace (2007), this model has computational advantage
when it comes to estimation.With a zero diagonalWn, the determinant
of eμWn is one, so the likelihood function of the MESS model is rela-
tively simpler than that of the SAR model where the determinant of
(In−λWn) depends on λ.
8 See page 14 of LeSage and Pace (2009).
9 In the MESS model we setWn to be a conventional spatial weight matrix consisting

of known constants. As pointed out by a referee, LeSage and Pace (2009) has consid-

ered an extension of the MESS model, in whichWn ¼ ∑p
i¼1

ϕiNi

∑p
i¼1 ϕi

� �
. Here p is the (un-

known) number of nearest neighbors and 0bϕb1 represents an unknown decay factor
applied to each of the nearest neighbor weight matrices Ni. In this paper we focus on
the setting where Wn is a conventional spatial weight matrix for both the SAR model
and the MESS model.



Urban Economics 43 (2013) 250–271
252 X. Han, L. Lee / Regional Science and
3. The J-test procedure

The basic idea of a J-test is to check whether predictors from the alternative model can add significantly to the explanatory power in the null
model. Kelejian (2008) and Kelejian and Piras (2011) extend the J-test framework into the spatial setting. The focus of their J-test is to compare
different specifications of the spatial weight matrix Wn in a SAR model. Here, the J-test procedure is to compare the SAR model vs the MESS
model. Since a non-nested test works interchangeably between models, we conduct two groups of J-tests, where one has the null model
being the SAR model and the other has the MESS model as the null.

3.1. The J-test using the SAR model as the null

The specified null model and the alternative model are:

H0 : Yn ¼ λWnYn þ Xnβ þ Vn;

H1 : Sex
n μð ÞYn ¼ Xnβ

ex þ Vn:
ð3:1Þ

Let θsar=(λ, β′, σ2)′ be the parameter vector of the SARmodel. Similarly, let θex=(μ, βex′,σex2)′ be the parameter vector of theMESSmodel. For a
J-test procedure, we need to obtain predictors from the alternative model. Here we use the quasi-maximum likelihood (QML) method to estimate

the MESS model. Let θ̂exn ¼ ðμ̂ n; β̂
ex
n
′; σ̂ ex2

n Þ′ be the QMLE of the MESSmodel. According to Eq. (3.1), a predictor of Yn can be from the reduced form of

theMESSmodel, which is Ŷ nj1 ¼ Sex
n μ̂ nð Þ−1Xnβ̂ex

n . Alternatively, if we denoteUn(μ)= In−Sn
ex(μ), thenwe can construct a predictor from the structural

form of theMESSmodel: Yn=Un(μ)Yn+Xnβex+Vn, as Ŷ nj2 ¼ Un μ̂ nð ÞYn þ Xnβ̂ex
n . These predictors are motivated by Kelejian and Piras (2011) for the

SAR model with different spatial weight matrices.
With a predictor, the null SAR model can be augmented into the following equation:

Yn ¼ λWnYn þ Xnβ þ Ŷ njr1δr1 þ Vn; ð3:2Þ

where the index r1 is either 1 or 2, which provides the basic equation for a J-test. Obviously, the augmented model is just the SAR model plus an
additional regressor, which is one of the two predictors from the MESS model. For estimation, the ML method might not be feasible as the aug-
mented equation would not have a simple likelihood function. This is so, in particular, when the predictor is Ŷ n 2j , which contains the dependent
variable Yn. So instead, we consider the 2SLS method suggested by Kelejian and Prucha (1998), or the GMM procedure with both linear and qua-
dratic moments proposed by Lee (2007) for estimating Eq. (3.2). The 2SLS method is simpler from a computational point of view as it has a
closed form solution. The J-test in Kelejian and Piras (2011) is based on the 2SLS method. However, the GMM method in Lee (2007) uses qua-
dratic moments in addition to the linear moments used in 2SLS and is relatively more efficient than the 2SLS method. To analyze asymptotic
properties of the J-test procedure, it would be helpful to have an idea on how a predictor from the alternative model (the MESS model)
would behave under the null SAR model. As the MESS model is a misspecified one under the null SAR model, the estimated parameters θ̂exn in
the predictors would not converge to structural parameters but might converge to some limiting values. The detailed analysis of their limiting
values, or the so-called pseudo true values of θ̂exn based upon the QML method is in Appendix B.

Denote ηr1=(λ,β′,δr1)′. Let η0r1=(λ0,β′0,0)′ be the true value of ηr1 for r1=1, 2, under the null SAR model. We first impose the following as-
sumption on η0r1.

Assumption 3.1. η0r1 is in the interior of the parameter space Hr1 , which is a bounded subset of Rk+2.10

Since the 2SLS method can be viewed as a special case of GMM, we begin with J-test procedure based upon the GMM method. Let

Vnðηr1 Þ ¼ In−λWnð ÞYn−Xnβ−Ŷ njr1δr1 . The GMM method is based on an instrumental variable (IV) matrix Qn and the IV functions PjnVn(ηr1)

where Pjn is a n×n square (constant) matrix with tr(Pjn)=0 for j=1, 2,…, q for some finite q. The GMMmethod uses the moment function vector

gnðηr1 Þ ¼ P1nVnðηr1 Þ;…; PqnVnðηr1 Þ;Qn

� �′
Vnðηr1 Þ;

where Q′nVn(ηr1) is the linear moment function and V′n(ηr1)PjnVn(ηr1)'s are the quadratic moment functions.
Consider first the linear moment Q′nVn(ηr1). As suggested by Kelejian and Prucha (1998), one could specify the IV matrix Qn as Qn=

(Xn, WnXn, …, Wn
dXn)LI where LI refers to the linearly independent columns, i.e., Qn consists of all linearly independent columns of Xn,

WnXn, ⋯, Wn
dXn. In the augmented model, we have one additional predictor from the MESS model. Obviously we do not need IVs for

Ŷ n 1j since Ŷ nj1 ¼ Sexn μ̂ nð Þ−1Xnβ̂ex
n is essentially exogenous. However, we might need more IVs in order to accommodate Ŷ nj2 because

Ŷ nj2 involves endogenous variables. Let Sn(λ)= In−λWn, Sn=Sn(λ0) and Û n ¼ Un μ̂ nð Þ. Note that under the null SAR model

Ŷ nj2 ¼ Û nYn þ Xnβ̂
ex
n ¼ Û nS

−1
n Xnβ0 þ ÛnS

−1
n Vn þ Xnβ̂

ex
n :
10 We don't need this assumption for the 2SLS method. For nonlinear extremum estimation methods, compactness on the parameter space is usually needed to demonstrate con-
sistency of the estimates (Amemiya, 1985). However, for the GMM method here, ηr1 appears nonlinearly in the linear and quadratic moments in terms of polynomials. So the
boundness of Hr1 will be sufficient.
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So we might still use Qn as the IV matrix for Ŷ n 2j since Sn
−1Xn are correlated with Ŷ n 2j as long as Qn contains enough IVs.11 We add some

relevant rank conditions for Qn:

Assumption 3.2. Assume the elements of Qn are uniformly bounded in absolute value. Furthermore, limn→∞1
nQ

′
nQn have finite full column rank.

Next, consider the quadratic moment functions V′n(ηr1)PjnVn(ηr1)'s. Following Lee (2007), letP1n be the class of constant n×n matrices which
have a zero trace.12 We impose the following assumption on P1n:

Assumption 3.3. The matrices Pjn's from P1n are uniformly bounded in both row and column sums in absolute value.

Denote γ=(λ, β′)′ and ηr1=(λ,β′,δr1)′=(γ′,δr1)′. Let μ n|sar* be the sequence of pseudo true values of μ̂ n for the MESS model under the null
SAR model and βn|sar

ex⁎ be the sequence of pseudo true values of β̂ex
n . By Lemmas A.5 and B.1

p limŶ nj1 ¼ Sex�−1
njsar Xnβ

ex�
njsar

p limŶ nj2 ¼ U�
njsarS

−1
n Xnβ0 þ Xnβ

ex�
njsar

p lim
1
n
Q ′

nŶ nj1−p lim
1
n
Q ′

n Sex�−1
njsar Xnβ

ex�
njsar

� �
¼ op 1ð Þ

p lim
1
n
Q ′

nŶ nj2−p lim
1
n
Q ′

n U�
njsarS

−1
n Xnβ0 þ Xnβ

ex�
njsar

� �
¼ op 1ð Þ;

where Sn|sar
ex⁎ =Sn

ex(μn|sar⁎ ) and Un|sar⁎ =Un(μn|sar⁎ ). Let Yn|1⁎ =Sn|sar
ex⁎−1Xnβn|sar

ex⁎ and Yn|2⁎ =Un|sar⁎ Sn
−1Xnβ0+Xnβn|sar

ex⁎ . With Yn|r1⁎ , we can derive the
expression of E(gn(ηr1)). Denote Gn(λ)=Wn(In−λWn)−1 and Gn=Gn(λ0). For any possible value ηr1

Eðgnðηr1 ÞÞ ¼ E

hn γð Þ þ Y�
njr1 ðδ0−δr1 Þ þ Sn λð ÞS−1

n Vn

h i
′
P1n hn γð Þ þ Y�

njr1 ðδ0−δr1 Þ þ Sn λð ÞS−1
n Vn

h i
⋮

hn γð Þ þ Y�
njr1 ðδ0−δr1 Þ þ Sn λð ÞS−1

n Vn

h i
′
Pqn hn γð Þ þ Y�

njr1 ðδ0−δr1 Þ þ Sn λð ÞS−1
n Vn

h i
Q ′

n hn γð Þ þ Y�
njr1 ðδ0−δr1 Þ þ Sn λð ÞS−1

n Vn

h i

0
BBBBBBB@

1
CCCCCCCA
;

where hn(γ)=Xn(β0−β)+(λ0−λ)GnXnβ0. According to Hansen (1982), in the GMM framework, the identification condition for ηr1 requires

the unique solution of the limiting equations, limn→∞
1
nEgnðηr1 Þ ¼ 0 at η0r1. For the linear moment function, by the dominated convergence

theorem

lim
n→∞

1
n
EQ ′

n hn γð Þ þ Y�
njr1 ðδ0−δr1 Þ þ Sn λð ÞS−1

n Vn

h i
¼ lim

n→∞
1
n
Q ′

n hn γð Þ þ Y�
njr1 ðδ0−δr1 Þ

h i

¼ lim
n→∞

1
n
Q ′

n Xn;Y
�
njr1 ;GnXnβ0

h i β0−β
δ0−δr1
λ0−λ

0
@

1
A:

Therefore, ηr1 is identified if limn→∞1
nQ

′
n Xn;Y

�
njr1 ;GnXnβ0

h i
has full rank k+2. This sufficient rank condition implies the necessary rank con-

dition that [Xn,Yn|r1⁎ ,GnXnβ0] has full column rank for a large enough value of n. However, there could be some situations in which this necessary
rank condition would not hold (Lee, 2007). A possible example is β0=0. Under this circumstance, [Xn,Yn|r1⁎ ,GnXnβ0]'s rank will be k+1 if we assume
[Xn,Yn|r1⁎ ] has rank k+1. In this case, β0 and δ0 can be identified only if λ0 is identified (Lee, 2007). As suggested by Lee (2007), we can identify λ0 by
the quadratic moment function.

Consider E{[hn(γ)+Yn|r1⁎ (δ0−δr1)+Sn(λ)Sn−1Vn]′Pjn[hn(γ)+Yn|r1⁎ (δ0−δr1)+Sn(λ)Sn−1Vn]}. The corresponding limiting equation is

lim
n→∞

1
n
E hn γð Þ þ Y�

njr1 ðδ0−δr1 Þ þ Sn λð ÞS−1
n Vn

h i
′
Pjn hn γð Þ þ Y�

njr1 ðδ0−δr1 Þ þ Sn λð ÞS−1
n Vn

h in o

¼ lim
n→∞

1
n

hn γð Þ þ Y�
njr1 ðδ0−δr1 Þ

h i
′
Pjn hn γð Þ þ Y�

njr1 ðδ0−δr1 Þ
h i

þ σ2
0tr S−1′

n Sn λð Þ′PjnSn λð ÞS−1
n

� �n o
:

for r1=1, 2. Note that the first component of the above limiting equation would drop out when β0=0, but λ can be identified by σ0
2tr(Sn−1′Sn(λ)′

PjnSn(λ)Sn−1)=0. Let AS denote the sum (A+A′) for any square matrix A. We can impose identification assumptions similar to Lee (2007).

Assumption 3.4. Either (i) limn→∞1
nQ

′
n Xn; Y

�
njr1 ;GnXnβ0

h i
has full rank k+2 for r1=1, 2 or (ii) limn→∞1

nQ
′
n Xn;Y

�
njr1

h i
has full rank k+1 for r1=1,

2, limn→∞1
ntr PS

jnGn

� �
≠0 for some j, and limn→∞1

n tr PS
1nGn

� �
;…; tr PS

qnGn

� �h i
is linearly independent of limn→∞1

n tr G′
nP1nGn

� �
;…; tr G′

nPqnGn

� �h i
.

11 Û nS
⋯1
n Xn can be expressed as linear combination of Xn, Wn, Xn, Wn

2Xn,…, Wn
dXn,…. One could also use Qn ¼ Û nXn; Û nWnXn;…; Û nW

d
nXn

� �
as the IV matrix.

12 We could also consider a subclass P2n of P1n , which consists of matrices with zero diagonal. P2n would be useful in the GMM estimation when the model has unknown
heteroskedastic disturbances, as discussed in Lin and Lee (2010).
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Under the null, the augmented model evaluated at true parameters is just the SAR model. As in Lee (2007), the variance matrix of the
moment functions of the SAR model involves variances and covariances of linear and quadratic forms of Vn. Denote Ωn=var(gn(η0r1)). Also,
let vecD(A)=(a11, …, ann)′ denote the column vector formed with the diagonal elements of a square n×n matrix A. By Lemma A.3

Ωn ¼ μ4−3σ4
0

� �
ω′

qnωqn μ3ω
′
qnQn

μ3Q
′
nωqn 0

0
@

1
Aþ Bn; ð3:3Þ

where μ3=E(vni3 ) and μ4=E(vni4 ), ωqn=[vecD(P1n), …, vecD(Pqn)] and

Bn ¼ σ4
0

tr P1nP
S
1n

� �
… tr P1nP

S
qn

� �
0

⋮ ⋮ ⋮ ⋮
tr PqnP

S
1n

� �
… tr PqnP

S
qn

� �
0

0 … 0
1
σ2

0

Q ′
nQn

0
BBBBBB@

1
CCCCCCA
: ð3:4Þ

Then following Lee (2007), we impose the following regularity condition on the limit of 1
nΩn.

Assumption 3.5. The limit of 1
nΩn exists and is a nonsingular matrix.

As in Hansen (1982), with a linear transformation of the moment functions, angn(ηr1),
13 we have the following proposition:

Proposition 1. Under the null SARmodel, given Assumptions 2.1–2.4, 3.1–3.5 and B.1, suppose that Pjn for j=1,…, q are fromP1n anda0 limn→∞1
nEgnðηr1 Þ ¼

0 has a unique root at η0r1=(γ′0,0)′ in the parameter space for r1=1, 2. Then, the GMME η̂n r1j derived fromminηr1
gn(ηr1)′a′nangn(ηr1) is a consistent estimator

of η0r1, and
ffiffiffi
n

p ðη̂njr1−η0r1 Þ→
D N 0;Σð Þ, where

Σ ¼ lim
n→∞

1
n
D′
njr1

� �
a′nan

1
n
Dnjr1

� �� �−1 1
n
D′
njr1

� �
a′nan

1
n
Ωn

� �
a′nan

1
n
Dnjr1

� �

� 1
n
D′
njr1

� �
a′nan

1
n
Dnjr1

� �� �−1
;

for r1=1

Dnj1 ¼
σ 2

0 tr PS
1nGn

� �
0 0

⋮ ⋮ ⋮
σ 2

0 tr PS
qnGn

� �
0 0

Q ′
nGnXnβ0 Q ′

nXn Q ′
nS

ex�−1
njsar Xnβ

ex�
njsar

0
BBBB@

1
CCCCA;

and for r1=2

Dnj2 ¼

σ 2
0 tr PS

1nGn

� �
0 σ2

0tr PS
1nU

�
njsarS

−1
n

� �
⋮ ⋮ ⋮

σ 2
0 tr PS

qnGn

� �
0 σ2

0tr PS
qnU

�
njsarS

−1
n

� �
Q ′

nGnXnβ0 Q ′
nXn Q ′

n U�
njsarS

−1
n Xnβ0 þ Xnβ

ex�
njsar

h i

0
BBBBB@

1
CCCCCA:

From Proposition 1, the optimal choice of a weighting matrix a′nan is
1
n
Ωn

� �−1
by the generalized Schwartz inequality. We have the following

proposition:

Proposition 2. Under the null SARmodel, given Assumptions 2.1–2.4, 3.1–3.5 and B.1, suppose that Ω̂n

� �−1
−
�
Ωn

�−1
¼ op 1ð Þ, then the feasible optimal

GMME η̂on r1j derived from minηr1
g′nðηr1 Þ Ω̂n

� �−1
gnðηr1 Þ with Pjn's from P1n has the asymptotic distribution

ffiffiffi
n

p
η̂onjr1−η0r1

� �
→
D
N 0;

�
lim
n→∞

D′
njr1 Ωnð Þ−1Dnjr1

�−1
� �

;

for r1=1, 2.
Therefore, we could construct test statistics based on Proposition 1 to test whether δr1 is significantly different from zero or not. Also we could

consider using the feasible optimal GMM (FOGMM) approach to construct the test statistics. Our J-test procedure based on the FOGMM ap-
proach can be summarized as follows:

Step 1: Estimate the parameters in the MESS model by the ML method in LeSage and Pace (2007) and calculate predictors Ŷ n r1j for r1=1, 2.
Step 2: Estimate the SAR model by the ML method or the GMM method, obtain estimates λ̂n and β̂n. Then calculate the initial estimates of the

variance of the residuals σ̂ 2
n by σ̂ 2

n ¼ 1
nV̂

′
nV̂ n, where V̂ n ¼ Yn−λ̂nWnYn−Xnβ̂n.
13 As in the usual GMM estimation framework, an is a matrix with a full rank. Also an is assumed to converge to a constant full rank matrix a0.
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Step 3: Use the results in the previous two steps to compute the weighting matrix Ω̂n

� �−1
.

Step 4: Use the FOGMM method to estimate the augmented model. In particular, η̂n r1j can be derived from minηr1
g′nðηr1 Þ Ω̂n

� �−1
gnðηr1 Þ.

Let R=(01×(k+1), 1). Then, the J statistic as the Wald test statistic is

Wogmmjr1 ¼ Rη̂njr1

� �
′
R D̂ ′

njr1 Ω̂n

� �−1
D̂njr1

� �−1
R′

� �−1

Rη̂njr1

� �
: ð3:5Þ

Moreover, we could also construct a DD test statistic and a G test statistic in the GMM framework. The DD test statistic is:

DDogmmjr1 ¼ min
ηr1 jδr1¼0

g′nðηr1 ÞΩ̂
−1

n
gnðηr1 Þ−min

ηr1
g′nðηr1 ÞΩ̂

−1
n gnðηr1 Þ: ð3:6Þ

Lastly, denote D̂n ogmmr1j as the first derivative matrix of gn(ηr1), with respect to ηr1, evaluated at the FOGMM estimates for the restricted

parameters, η̂njogmm ¼ λ̂njogmm; β̂
′

njogmm

� �′
. Also denote Ŝ−1

njogmm ¼ In−λ̂njogmmWn

� �−1
, Ĝnjogmm ¼ Wn In−λ̂njogmmWn

� �−1
and Ŝexn ¼ Sexn μ̂ nð Þ. Let

σ̂ 2
njogmm be the FOGMM estimate of the variance of residuals of the restricted model (SAR). Explicitly,

D̂njogmm1 ¼

σ̂ 2
njogmmtr PS

1nĜnjogmm

� �
0 0

⋮ ⋮ ⋮
σ̂ 2

njogmmtr PS
qnĜnjogmm

� �
0 0

Q ′
nĜnjogmmXnβ̂njogmm Q ′

nXn Q ′
nŜ

ex−1
n Xnβ̂

ex

n

0
BBBB@

1
CCCCA

and

D̂njogmm2 ¼

σ̂ 2
njogmmtr PS

1nĜnjogmm

� �
0 σ̂ 2

njogmmtr PS
1nÛnŜ

−1
njogmm

� �
⋮ ⋮ ⋮
σ̂ 2

njogmmtr PS
qnĜnjogmm

� �
0 σ̂ 2

njogmmtr PS
qnÛnŜ

−1
njogmm

� �
Q ′

nĜnjogmmXnβ̂njogmm Q ′
nXn Q ′

n ÛnŜ
−1
njogmmXnβ̂njogmm þ Xnβ̂

ex
n

h i

0
BBBBB@

1
CCCCCA:

The G test statistic is:

Gogmmjr1 ¼ g′n η̂njogmm

� �
Ω̂−1

n D̂njogmmr1
D̂′

njogmmr1
Ω̂−1

n D̂njogmmr1

� �−1
D̂′

njogmmr1
Ω̂−1

n gn η̂njogmm

� �
: ð3:7Þ

At the 5% level, H0 would be rejected if Wogmmjr1 > χ2
0:95 1ð Þ, or DDogmmjr1 > χ2

0:95 1ð Þ, or Gogmmjr1 > χ2
0:95 1ð Þ.

We could also use the 2SLS method to implement the J-test. The test procedure is a special case of the GMM using only linear moments, and

in step 2, we will apply the 2SLS method to estimate the augmented model in Eq. (3.2). Let Fnjr1 ¼ WnYn;Xn; Ŷ njr1
� �

and Pn=Qn(Q′nQn)−1Q′n.

The 2SLS estimator of ηr1 is η̂njr1 ¼ ðFnjr1 ′PnFnjr1 Þ−1Fnjr1
′PnYn. The Wald test statistic based on the 2SLS method is

Wslsjr1 ¼ Rη̂njr1

� �
′

Rσ̂ 2
n F ′njr1PnFnjr1

� �−1
R′

� �−1
Rη̂njr1

� �
: ð3:8Þ

As the 2SLS estimator η̂njr1 is derived from minηr1
V ′
n ðηr1 ÞQn σ̂ 2

nQ
′
nQn

� �−1
Q ′

nVnðηr1 Þ, the DD test statistic is:

DDslsjr1 ¼ min
ηr1 jδr1¼0

V ′
nðηr1 ÞQn σ̂ 2

nQ
′
nQn

� �−1
Q ′

nVnðηr1 Þ− min
ηr1

V ′
nðηr1 ÞQn σ̂ 2

nQ
′
nQn

� �−1
Q ′

nVnðηr1 Þ: ð3:9Þ

Finally, let D̂n slsr1j stand for the first derivative matrix of Q′nVn(ηr1) with respect to ηr1, evaluated at the restricted parameters η̂njsls ¼
λ̂njsls; β̂

′

njsls
� �′

from the 2SLS method. Let Ŝnjsls ¼ Snðλ̂njslsÞ. Then, we have

D̂njsls1 ¼ Q ′
n WnYn;Xn; Ŝ

ex−1
n Xnβ̂

ex
n

h i
;

D̂njsls2 ¼ Q ′
n WnYn;Xn; Û nYn þ Xnβ̂

ex
n

h i
:

Note that Vnðη̂njslsÞ ¼ ŜnjslsYn−Xnβ̂njsls. The G test statistic is

Gslsjr1 ¼ V ′
n ðη̂njslsÞQn σ̂ 2

nQ
′
nQn

� �−1
D̂njslsr1 D̂′

njslsr1 σ̂ 2
nQ

′
nQn

� �−1
D̂njslsr1

� �−1
� D̂′

njslsr1 σ̂ 2
nQ

′
nQn

� �−1
Q ′

nVnðη̂njslsÞ:
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3.2. The J-test using the MESS model as the null

Consider the J-test procedure using the MESS model as the null and the SAR model being the alternative:

H0 : Sex
n μð ÞYn ¼ Xnβ

ex þ Vn;
H1 : Yn ¼ λWnYn þ Xnβ þ Vn:

ð3:10Þ

Let θ̂sarn ¼ λ̂n; β̂
′

n; σ̂ 2
n

� �′
denote the QMLE of the SAR model. The predictors are Ŷ nj1 ¼ In−λ̂nWn

� �−1
Xnβ̂n and Ŷ nj2 ¼ λ̂nWnYn þ Xnβ̂n. The

augmented MESS model is:

Yn μð Þ ¼ Xnβ
ex þ Ŷ njr2δr2 þ Vn; ð3:11Þ

where Yn(μ)=Sn
ex(μ)Yn for r2=1, 2. Here we will use the nonlinear 2SLS (N2SLS) approach to estimate the augmented model.

Denote ϕ=(μ, βex′)′, ψr2=(μ,βex′,δr2)′ and ψ0r2=(μ,βex′,0)′. We impose the following regularity condition:

Assumption 3.6. ψ0r2 is in the interior of the parameter space Ψ, which is a bounded subset of Rk+2.

In Appendix C, we investigate the limiting values, or the pseudo true values of θ̂sarn based upon the QMLmethod, under the null MESS model. Note
that Assumption 2.3 implies that Snex(μ) is uniformly bounded in both row sum and column sums in absolute value for all μ in the parameter space.14

Let Sn|ex⁎ =Sn(λn|ex⁎ ) where λn|ex⁎ is the sequence of pseudo true values of λ̂n under the null MESS model. Also denote βn|ex⁎ as the sequence of
pseudo true values of β̂n. Let Sn

ex=Sn
ex(μ0). Consider Yn|r2⁎ , the probability limit of Ŷ n r2j , which is

Y�
nj1 ¼ S�njex

−1Xnβ
�
njex;

Y�
nj2 ¼ λ�

njexWnS
ex
n

−1Xnβ
ex
0 þ Xnβ

�
njex:

ð3:12Þ

The J-test procedure for Eq. (3.10) is as follows:

Step 1: Estimate λ and β in the SAR model by the ML method and calculate the predictors Ŷ n r2j for r2=1, 2.
Step 2: Use the nonlinear 2SLS (N2SLS) method with the IV matrix Qn=(Xn, WnXn, …, Wn

dXn) to estimate the augmented Eq. (3.11).

Denote gn(ψr2)=Q′nVn(ψr2). The N2SLS estimator can be derived from

min
ψr2

V ′
nðψr2

ÞQn Q ′
nQn

� �−1
Q ′

nVnðψr2
Þ; ð3:13Þ

where Vnðψr2
Þ ¼ Yn μð Þ−Xnβ

ex−Ŷ njr2δr2 . As the N2SLS estimation is just a special case of GMM estimation, the identification of ψr2 requires the

unique solution of the limiting equations, limn→∞
1
nEjexgnðψr2

Þ ¼ 0. Note that

lim
n→∞

1
n
Ejexgnðψr2

Þ ¼ lim
n→∞

1
n
Q ′

n Sexn μð ÞSex−1
n Xnβ

ex
0 −Xnβ

ex−Y�
njr2δr2

� �
þ o 1ð Þ:

Thus, we impose the following identification condition:

Assumption 3.7. The limiting equations limn→∞1
nQ

′
n Sexn μð ÞSex−1

n Xnβex
0 −Xnβex−Y�

njr2δr2
� �

¼ 0 has a unique root in the parameter space in the
augmented MESS model.

The asymptotic normality of the N2SLS estimator ψ̂n r2j follows from the next proposition:

Proposition 3. Under the null MESS model, given Assumptions 2.1–2.4, 3.6–3.7 and C.1, the N2SLS estimator ψ̂n r2j derived from minψr2
V′n(ψr2)

Qn(Q′nQn)−1Q′nVn(ψr2) is a consistent estimator of ψ0r2, and

ffiffiffi
n

p
ψ̂njr2−ψ0r2

� �
→
D
N 0;σex2

0 p lim
1
n
D′

njr2 Q ′
nQn

� �−1
Dnjr2

� �−1� �
;

where

Dnj1 ¼ Q ′
n WnXnβ

ex
0 ;Xn; S

�−1
njex Xnβ

�
njex

h i
;

Dnj2 ¼ Q ′
n WnXnβ

ex
0 ;Xn;λ

�
njexWnS

ex−1
n Xnβ

ex
0 þ Xnβ

�
njex

h i
:

Denote ψ̂njr2 ¼ μ̂ njr2 ; β̂
′

njr2 ; δ̂njr2
� �′

, Ŝn ¼ Sn ð̂λnÞ, Ŝexnjr2 ¼ Sexn ðμ̂ njr2 Þ and

D̂nj1 ¼ Q ′
n WnXnβ̂

ex
nj1;Xn; Ŝ

−1
n Xnβ̂n

h i
;

D̂nj2 ¼ Q ′
n WnXnβ̂

ex
nj2;Xn; λ̂nWnŜ

ex−1
nj2 Xnβ̂

ex
nj2 þ Xnβ̂n

h i
:

14 This is so, because ‖eμWn‖≤‖In‖+|μ|‖Wn‖+|μ|2‖Wn‖
2/2!+…+|μ|t‖Wn‖

t/t!+…=e|μ|‖Wn‖. It follows that supn‖e
μWn‖≤e|μ|sup‖Wn‖b∞ under the assumption that sup‖Wn‖b∞.
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The Wald-test statistic is:

Wslsjr2 ¼ Rψ̂njr2

� �
′
Rσ̂ ex2

n D̂′
njr2 Q ′

nQn

� �−1
D̂njr2

� �−1
R′

� �−1

Rψ̂njr2

� �
: ð3:14Þ

where R=(01×(k+1), 1). The DD test statistic is:

DDslsjr2 ¼ min
ψr2

jδr2¼0
V ′
nðψr2

ÞQn σ̂ ex2
n Q ′

nQn

� �−1
Q ′

nVnðψr2
Þ− min

ψr2

V ′
n ðψr2

ÞQn σ̂ ex2
n Q ′

nQn

� �−1
Q ′

nVnðψr2
Þ: ð3:15Þ

Finally, let D̂n slsr2j denote the first derivative of Q′nVn(ψr2) with respect to ψr2, evaluated at the N2SLS restricted estimate ψ̂njsls ¼ μ̂ njsls; β̂
ex′
njsls

� �
.

Note that Vnðψ̂njslsÞ ¼ Sexn ðμ̂ njslsÞYn−Xnβ̂ex
njsls for r2=1, 2. The G test statistic is

Gslsjr2 ¼ V ′
n ðψ̂njslsÞQn σ̂ ex2

n Q ′
nQn

� �−1
D̂njslsr2 D̂′

njslsr2 σ̂ ex2
n Q ′

nQn

� �−1
D̂njslsr2

� �−1
� D̂′

njslsr2 σ̂ ex2
n Q ′

nQn

� �−1
Q ′

nVnðψ̂njslsÞ: ð3:16Þ
4. The J-test for models with unknown heteroskedasticity

In the previous sections, the error terms of each of the SAR and the
MESS models are i.i.d with mean zero and variance σ2. However, this
homoskedastic assumption may be restrictive. Therefore, it might be
of interest to extend our J-test procedure to the setting where the
error terms are independent but with unknown heteroskedasticity.

Assumption 4.1. The vni's are independent (0, σni
2) with finite mo-

ments larger than the fourth order such that E|vni|4+1 for some 1>0
are uniformly bounded for all n and i.

Let Σn=Diag(σn1
2 , …, σnn

2 ) represent the variance matrix of the
error terms, where σni

2 =E(vni2 ) for i=1, …, n. Recently, Lin and Lee
(2010) and Kelejian and Prucha (2010) propose the Robust GMM
(RGMM) estimation method of the SAR model. We follow their
RGMM approach15 to derive a J-test procedure for the two models
in the presence of unknown heteroskedasticity.

4.1. The J-test under the SAR model with unknown heteroskedasticity as
the null

Recall that our null model and alternative models are:

H0 : Yn ¼ λWnYn þ Xnβ þ Vn;
H1 : Sexn μð ÞYn ¼ Xnβ

ex þ Vn;

but with unknown heteroskedastic variances. Note that ϕ=(μ, βex′)′

is the vector of parameters of the MESS model without σex2 and ϕ̂n is
the estimated parameter ϕ. The predictors from the MESS model are
the same as in Section 3.1, namely Ŷ nj1 ¼ Sexn μ̂ nð Þ−1Xnβ̂n and Ŷ nj2 ¼
Un μ̂ nð ÞYn þ Xnβ̂

ex
n . Here we will apply the N2SLS method to estimate

the MESS model in order to obtain the predictors Ŷ n r1j for r1=1, 2.16

Specifically, ϕ̂n is obtained from minϕV′n(ϕ)Qn(Q′nQn)−1Q′nVn(ϕ)
where Qn is the same IV matrix in Section 3 and Vn(ϕ)=Sn

ex(μ)Yn−
Xnβex. We discuss the pseudo true values of ϕ̂n based on the N2SLS
method in Appendix D.

The augmented SAR equation is:

Yn ¼ λWnYn þ Xnβ þ Ŷ njr1δr1 þ Vn:

Recall that ηr1=(λ,β′,δr1)′ andVnðηr1 Þ ¼ Sn λð ÞYn−Xnβ−Ŷ njr1δr1 .We
will construct our RGMM estimation for this augmented equation
through the linear and the quadratic moments. The IV matrix Qn used
in the linear moment function will be the same as in Section 3. For qua-
dratic moments, we consider matrix Pn in P2n with Diag(Pn)=0. As in
15 The Robust 2SLS method is just a special case of the RGMM method.
16 There may be other methods useful for the estimation of the MESS model with un-
known heteroskedasticity. Here we use the N2SLS as the model equation has a form
well suited for that estimation method.
Lin and Lee (2010), by taking Pn from P2n, we maintain the uncorre-
latedness between Vn and PnVn because E(V′nPnVn)=tr[PnE(VnV′n)]=tr
[Diag(Pn)E(VnV′n)]=0. We impose the following conditions on P2n:

Assumption 4.2. The matrices Pjn's from P2n are uniformly bounded
in both row and column sum norms.

The set of moment functions form the vector gn(ηr1)=(P1nVn(ηr1),
…, PqnVn(ηr1), Qn)′Vn(ηr1). For identification of the parameters, the
first part of the identification condition of Assumption 3.4 will be
maintained but the second part needs to be modified.

Assumption 4.3. Either (i) limn→∞1
nQ

′
n Xn;Y

�
njr1 ;GnXnβ0

h i
has full rank

k+2 for r1=1, 2 or (ii) limn→∞1
nQ

′
n Xn; Y

�
njr1

h i
has full rank k+1 for

r1=1, 2, limn→∞1
ntr ΣnP

S
jnGn

� �
≠0 for some j∈1, ⋯, q, and

limn→∞1
n tr ΣnP

S
1nGn

� �
;…; tr ΣnP

S
qnGn

� �h i
and limn→∞1

n tr ΣnG
′
nP1nGn

� �
;…;

h
tr ΣnG

′
nPqnGn

� �
� are linearly independent.

Recall that μn|sar⁎ is the sequence of pseudo true values of μ̂ n under
the null SAR model and βn|sar

ex⁎ is the sequence of pseudo true values of
β̂ex

n . Let Sn|sar
ex⁎ =Sn

ex(μn|sar⁎ ), Un|sar⁎ =Un(μn|sar⁎ ). Similar to Lin and Lee
(2010), the consistency and asymptotic normality of the RGMM esti-
mator can be derived as follows:

Proposition 4. Under the null SAR model, given Assumptions 2.2–2.4,
3.1–3.2, 4.1–4.3 andD.1, suppose that Pjn are fromP2n,a0 limn→∞1

nEgnðηr1 Þ ¼
0 has a unique root at η0r1=(γ′0,0)′ in its parameter space for r1=1, 2.
Then, the RGMME η̂n r1j derived fromminηr1gn(ηr1)′a′nangn(ηr1) is a consistent
estimator of η0r1, and

ffiffiffi
n

p
η̂njr1−η0r1
� �

→D N 0; Γð Þ, where

Γ ¼ lim
n→∞

1
n

D′
nhjr1a

′
nanDnhjr1

� �−1
D′

nhjr1a
′
nanΩnha

′
nanDnhjr1 D′

nhjr1a
′
nanDnhjr1

� �−1

Ωnh ¼ Varðgnðη0r1 ÞÞ

¼
tr ΣnP1nΣnP

S
1n

h i
tr ΣnP1nΣnP

S
2n

h i
… 0

tr ΣnP2nΣnP
S
1n

h i
tr ΣnP2nΣnP

S
2n

h i
… 0

⋮ ⋮ ⋮
0 0 … Q ′

nΣnQn

0
BBBB@

1
CCCCA

and when r1=1

Dnhj1 ¼
tr ΣnP

S
1nGn

� �
0 0

⋮ ⋮ ⋮
tr ΣnP

S
qnGn

� �
0 0

Q ′
nGnXnβ0 Q ′

nXn Q ′
nS

ex�−1
njsar Xnβ

ex�
njsar

0
BBBB@

1
CCCCA;
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when r1=2

Dnhj2 ¼

tr ΣnP
S
1nGn

� �
0 tr ΣnP

S
1nU

�
njsarS

−1
n

� �
⋮ ⋮ ⋮

tr ΣnP
S
qnGn

� �
0 tr ΣnP

S
qnU

�
njsarS

−1
n

� �
Q ′

nGnXnβ0 Q ′
nXn Q ′

n U�
njsarS

−1
n Xnβ0 þ Xnβ

ex�
njsar

h i

0
BBBBB@

1
CCCCCA:

As expected, the Ωnh and Dnh|r1 can be consistently estimated via a
similar procedure to the robust variance construction in White (1980):

Proposition 5. Under the null SAR model, given Assumption 2.2–2.4,
3.1–3.2, 4.1–4.3 and D.1, 1

n D̂nhjr1−Dnhjr1
� �

¼ op 1ð Þ for r1=1, 2 and
1
n Ω̂nh−Ωnh

� �
¼ op 1ð Þ, where 1

nD̂nhjr1 and
1
nΩ̂nh are, respectively, estimators

of 1
nDnh r1j and 1

nΩnh, with all the parameters replaced by their consistent

estimators, and Σn by Σ̂n, where Σ̂n ¼ Diag v̂2
n1;…; v̂2

nn

� �
and v̂ni's are

the residuals obtained from the initial estimates of the SAR model.

With a consistently estimated Ωnh, a feasible optimal RGMM
(FORGMM) estimation for the augmented model can be derived.

Assumption 4.4. limn→∞1
nΩnh exists and is nonsingular.

Proposition 6. Suppose that 1
nΩ̂nh

� �−1
− 1

nΩnh

� �−1
¼ op 1ð Þ, under the

null SAR model, given Assumption 2.2–2.4, 3.1–3.2, 4.1–4.4 and D.1,

then the FORGMME η̂onjr1 derived from minηr1
g′nðηr1 ÞΩ̂

−1
nh gnðηr1 Þ has

the asymptotic distribution

ffiffiffi
n

p
η̂onjr1−η0r1

� �
→
D
N 0; lim

n→∞
1
n
D′

nhjr1Ω
−1
nh Dnhjr1

� �−1� �

for r1=1, 2.
Our J-test procedure based on the FORGMM method can be

summarized as follows:

Step 1: Estimate the MESS model by the N2SLS method and obtain
estimates of the relevant predictors.

Step 2: Estimate the SAR model by the RGMM method to obtain ini-
tial consistent estimates λ̂n and β̂n. Then use the estimated
residuals to compute Σ̂n.

Step 3: Use the results in the previous two steps to compute the
weighting matrix Ω̂−1

nh .
Step 4: Use the FORGMM method to estimate the augmented model.

The Wald test statistic is

Worgmmjr1 ¼ Rη̂onjr1

� �′
R D̂′

nhjr1 Ω̂nh

� �−1
D̂nhjr1

� �−1
R′

� �−1

Rη̂onjr1

� �
:

ð4:1Þ
We can also construct a DD test statistic and a G test statistic based

on the FORGMM method. The DD test statistic is:

DDorgmmjr1 ¼ min
ηr1 jδr1¼0

g′nðηr1 ÞΩ̂
−1
nh gnðηr1 Þ− min

ηr1
g′nðηr1 ÞΩ̂

−1
nh gnðηr1 Þ: ð4:2Þ

Lastly, denote D̂nhjr1 as the first derivative of gn(ηr1), with respect
to ηr1, evaluated at the restricted FORGMM estimate η̂njrgmm ¼
λ̂njrgmm; β̂

′

njrgmm

� �
′
, which is:

D̂nhj1 ¼

tr Σ̂nP
S
1nĜnjrgmm

� �
0 0

⋮ ⋮ ⋮
tr Σ̂nP

S
qnĜnjrgmm

� �
0 0

Q ′
nĜnjrgmmXnβ̂njrgmm Q ′

nXn Q ′
nŜ

ex−1
n Xnβ̂

ex
n

0
BBBB@

1
CCCCA
and

D̂nhj2 ¼

tr Σ̂nP
S
1nĜnjrgmm

� �
0 tr Σ̂nP

S
1nÛnŜ

−1
njrgmm

� �
⋮ ⋮ ⋮

tr Σ̂nP
S
qnĜnjrgmm

� �
0 tr Σ̂nP

S
qnÛnŜ

−1
njrgmm

� �
Q ′

nĜnjrgmmXnβ̂njrgmm Q ′
nXn Q ′

n ÛnŜ
−1
njrgmmXnβ̂njrgmm þ Xnβ̂

ex
n

h i

0
BBBBB@

1
CCCCCA:

where Ĝnjrgmm ¼ WnðIn−λ̂njrgmmÞ−1 and Ŝnjrgmm ¼ In−λ̂njrgmmWn

� �−1
. As

a result, our G test statistic is:

Gorgmmjr1 ¼ g′n η̂njrgmm

� �
Ω̂−1

nh D̂nhjr1 D̂′
nhjr1 Ω̂

−1
nh D̂nhjr1

� �−1
D̂′

nhjr1Ω̂
−1
nh gnðη̂njrgmmÞ:

4.2. The J-test under the MESS model with unknown heteroskedasticity as
the null

Here, our null and alternative models are:

H0 : Sexn μð ÞYn ¼ Xnβ
ex þ Vn;

H1 : Yn ¼ λWnYn þ Xnβ þ Vn:

And the augmented model is

Yn μð Þ ¼ Xnβ
ex þ Ŷ njr2δr2 þ Vn;

where Yn(μ)=Sn
ex(μ)Yn. Recall that γ=(λ, β′)′. Let γ̂n ¼ λ̂n; β̂

′
n

� �
′

represent the 2SLS or RGMM estimate of γ of the SAR model. The pre-

dictors from the SAR model are Ŷ nj1 ¼ ðIn−λ̂nWnÞ−1Xnβ̂n and Ŷ nj2 ¼
λ̂nWnYn þ Xnβ̂n. The detailed analysis of the pseudo true values of
γ̂n is given in Appendix E.

We estimate theMESSmodel by the N2SLSmethod and use the esti-
mated residuals to obtain consistent estimates of the variancematrix Σn

as in White (1980). Finally we will use a generalized N2SLS (GN2SLS)
method to estimate the augmented MESS equation. Recall that ψr2=

(μ,βex′,δr2)′ and Vnðψr2 Þ ¼ Yn μð Þ−Xnβex−Ŷ njr2δr2 . Let Sn|ex⁎ =Sn(λn|ex⁎ )

where λn|ex⁎ is the sequence of pseudo true values of λ̂n. βn|ex⁎ is the se-

quence of pseudo true values of β̂n. We have the following proposition:

Proposition 7. Under the null MESS model, given Assumptions 2.2–2.4,
3.6–3.7, 4.1–4.3 and E.1, the GN2SLS estimator ψ̂njr2 derived from

minψr2
V ′
n ðψr2 ÞQn Q ′

n∑̂nQn

� �−1
Q ′

nVnðψr2 Þ is a consistent estimator of
ψ0r2, and

ffiffiffi
n

p
ψ̂njr2−ψ0r2

� �
→
D
N 0; p lim

1
n
D′

njr2 Q ′
n∑nQn

� �−1
Dnjr2

� �−1� �
;

where Dn|r2 is

Dnj1 ¼ Q ′
n WnXnβ

ex
0 ;Xn; S

�−1
njex Xnβ

�
njex

� �
;

Dnj2 ¼ Q ′
n WnXnβ

ex
0 ;Xn; λ�

njexWnS
ex−1
n Xnβ

ex
0 þ Xnβ

�
njex

h i� �
:

Our J-test procedure can be summarized as follows:

Step 1: Estimate the SAR model by the 2SLS or the RGMM method
and calculate the relevant predictors.

Step 2: Estimate the MESS model by the N2SLS method and use the
estimated residuals to compute the variance matrix of the
error terms Σn.

Step 3: Use the GN2SLS method to estimate the augmented MESS
equation based on the results in the previous two steps.

Step 4: Construct the corresponding Wald, DD and G test statistics.
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Recall that R=(01×(k+1), 1), the Wald test statistic is

Wslsjr2 ¼ Rψ̂njr2

� �
′

R D̂′
njr2 Q ′

n∑̂nQn

� �−1
D̂njr2

� �−1
R′

� �−1

Rψ̂njr2

� �
:

The DD test statistic is:

DDslsjr2 ¼ min
ψr2

jδr2¼0
V ′
nðψr2

ÞQn Q ′
n∑̂nQn

� �−1
Q ′

nVnðψr2
Þ

− min
ψr2

V ′
nðψr2

ÞQn Q ′
n∑̂nQn

� �−1
Q ′

nVnðψr2
Þ:

Lastly, let D̂njslsr2 denote the first derivative of Q′nVn(ψr2) with

respect to ψr2, evaluated at the restricted GN2SLS estimate ψ̂njsls ¼
μ̂ njsls; β̂

ex′
njsls

� �′
. The G test statistic is

Gslsjr2 ¼ V ′
n ψ̂njsls
� �

Qn Q ′
n∑̂nQn

� �−1
D̂njslsr2 D̂

′
njslsr2 Q ′

n∑̂nQn

� �−1
D̂njslsr2

� �−1

� D̂ ′
njslsr2 Q ′

n∑̂nQn

� �−1
Q ′

nVnðψ̂njslsÞ:
5. Monte Carlo experiment

5.1. Experiment design

We consider the following two pairs of experiments:

H0 : Yn ¼ λWnYn þ lnβ1 þ X2nβ2 þ Vn

H1 : Sexn μð ÞYn ¼ lnβ
ex
1 þ X2nβ

ex
2 þ Vn;

ð5:1Þ

H0 : Sexn μð ÞYn ¼ lnβ
ex
1 þ X2nβ

ex
2 þ Vn

H1 : Yn ¼ λWnYn þ lnβ1 þ X2nβ2 þ Vn

ð5:2Þ

where ln=(1, …, 1)′ is the n×1 column vector of ones for the in-
tercept, X2n is a column vector of exogenous regressors, and β1,
β1
ex are, respectively, the coefficients of the intercept term of

the SAR model and the MESS model. The IV matrix used in the
experiment is

Qn ¼ ln;X2n;WnX2n;W
2
nX2n;W

3
nX2n

h i
:

The J-test statistics considered are:

Wsls: the Wald test statistic based on the 2SLS or the N2SLS
methods, using Qn as the IV matrix.
Gsls: the G test statistic based on the 2SLS or the N2SLS methods.
DDsls: the DD test statistic based on the 2SLS or the N2SLS
methods.
Wogmm: theWald test statistic based on the FOGMMmethod, using
Qn as the IV matrix for the linear moments, and Wn,
W2

n− 1
n tr W2

n

� �
In for the quadratic moments.

Gogmm: the G test statistic based on the FOGMM method.
DDogmm: the DD test statistic based on the FOGMM method.

The spatial weight matrix Wn is constructed by the function
“makeneighborsw”,17 which generates a row-normalized spatial
weightmatrix based onm nearest neighbors. Specifically, the function
first computes a distancemeasure d(i, j) between any two points, i and
j, that have coordinates (xi, yi) and (xj, yj). Then for each i, the function
selects them nearest neighbors based on d(i, j), j≠ i. If d(i, j) is among
the m closest distances, then Wij

⁎=1 andWij ¼ W�
ij

∑n
j¼1W

�
ij
. In all sets of

experiment, m is set to be 5.
17 This function is taken from LeSage's matlab code for spatial econometrics, which
can be found at http://www.spatial-econometrics.com/.
Following Kelejian and Piras (2011), we consider two distributions
for the exogenous regressor X2n. The first distribution is χ2(3), a
chi-squared distribution with three degrees of freedom. The second is
the uniform distribution U(0, 10) over (0, 10). The Vni's are randomly
generated from a normal distribution with zero mean and a finite vari-
ance. With homoskedastic disturbances, the estimation procedure in
the first step of the J-test for constructing predictors is the ML method.
For the first pair of experiments (Eq. (5.1)), we consider several sets of
parameter values for the twomodels. Specifically, if the data generating
process (dgp) is the SAR model, parameter value 1 (P-V1) has (λ0, β10,
β20, σ0)=(0.6, 2, 1, 1) and value 2 (P-V2) has (λ0, β10, β20, σ0)=(0.6, 2,
0.5,

ffiffiffi
2

p
). If the dgp is theMESSmodel, parameter value 1 (P-V1) has (μ0,

β10
ex, β20

ex , σ0
ex)=(−1.6094, 2, 1, 1) and value 2 (P-V2) has μ0; βex

10;
	

βex
20; σ ex

0 Þ ¼ ð−1:6094; 2; 0:5;
ffiffiffi
2

p
Þ. The variation in the error terms

with P-V2 is relatively more dominant than that of P-V1 since the coef-
ficient of the exogenous regressor in P-V2 becomes smaller and the
standard deviation of the error terms become larger. In addition to
λ0=0.6 and μ0=−1.6094,we also consider amoderate spatial interac-
tion effect model with λ0=0.4 and μ0=−0.5108.18 Thus if the dgp is
the SAR model, parameter value 3 (P-V3) has (λ0, β10, β20, σ0)=(0.4,
2, 1, 1) and value 4 (P-V4) has λ0; β10; β20; σ0ð Þ ¼
ð0:4; 2; 0:5;

ffiffiffi
2

p
Þ. If the dgp is the MESS model, parameter value 3

(P-V3) has (μ0, β10
ex , β20

ex , σ0
ex)=(−0.5108, 2, 1, 1) and value 4 (P-V4)

has μ0; βex
10; βex

20; σ ex
0

	 
 ¼ −0:5108;ð 2; 0:5;
ffiffiffi
2

p
Þ.

Lastly, for the second pair of experiments (Eq. (5.2)), we still consid-
er two values for the spatial parameters λ and μ. If the dgp is the MESS
model, parameter value 5 (P-V5) has (μ0,β10

ex ,β20
ex ,σ0

ex)=(−1.6094, 2, 1,
1) and value 6 (P-V6) has (μ0, β10

ex , β20
ex , σ0

ex)=(−0.5108, 2, 1, 1). If the
dgp is the SAR model, parameter value 5 (P-V5) has (λ0, β10, β20,
σ0)=(0.6, 2, 1, 1) and value 6 (P-V6) has (λ0, β10, β20, σ0)=(0.4, 2, 1,
1).

We use 1000 repetitions for each case in the Monte Carlo experi-
ment. The regressors are randomly redrawn for each repetition. We
consider 4 sample sizes here: 100, 300, 500 and 700. We calculate
all the test statistics and compute the relevant empirical sizes and
powers. These test statistics are evaluated at 5% critical values of the
chi-squared distribution with one degree of freedom.

For the J-test procedure for models with unknown heteroskedasticity,
we follow the variance design in Arraiz et al. (2010). Explicitly, we take
the ith element of Vn as

vn;i ¼ σn;i�n;i;

σn;i ¼ c
Nen;i

∑n
j¼1Nen;j=n

ð5:3Þ

where �n;i is generated from i.i.d N(0, 1) for all sample sizes considered
and Nen,i is the number of neighbors that the ith unit has. The c is set to
be 2 in all experiments. Aswe need variation in the number of neighbors
for each unit, we construct the spatial weight matrix following the spec-
ifications given by Arraiz et al. (2010). That is, we considerWn in terms of
a square grid. Let xi and yi, which only take values1; 1:5; 2; 2:5;…;

�
L,

denote the coordinates for unit i. For the units in the northeastern quad-
rant, both coordinates take discrete values L; Lþ 0:5; Lþ 1; Lþ 1:5;
Lþ 2;…;

�
L. The coordinates of the remaining units only take integer

values 1, 2, …, L−1. Then, we can define a distance measure between
any two units i and j, whose coordinates are (xi, yi) and (xj, yj), as follows:

d i; jð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi−xj
� �2 þ yi−yj

� �2r

and the row normalized spatial weight matrixWn is defined asWi,j=
Wi,j

⁎ /Σj=1
n Wi,j

⁎, whereWi,j⁎=1 if d(i, j) is between 0 and 1, and 0 other-
wise. In the experiment, we consider two cases of this matrix, namely
18 LeSage and Pace (2007) suggest an approximate mean of relating the magnitude of
λ and μ by letting λ=1−eμ. So μ=−1.6094 is approximately equivalent to a value of
0.8 for λ in the SAR model while μ=− 0.5108 corresponds to λ=0.4.

http://www.spatial-econometrics.com/


Table 1
Size and power of the J-test statistics under H0: Yn=λWnYn+ lnβ1+X2nβ2+Vn.

n x=χ2(3) x=U(0, 10)

Size Power Size Power

Yn|1 Yn|2 Yn|1 Yn|2 Yn|1 Yn|2 Yn|1 Yn|2

Wsls 100 0.043 0.053 0.939 0.987 0.054 0.055 0.987 1
300 0.047 0.05 1 1 0.041 0.044 1 1
500 0.061 0.064 1 1 0.06 0.053 1 1
700 0.049 0.048 1 1 0.058 0.066 1 1

Wogmm 100 0.144 0.217 0.482 0.873 0.134 0.185 0.574 0.94
300 0.082 0.104 0.559 1 0.082 0.117 0.676 1
500 0.072 0.087 0.627 1 0.066 0.09 0.782 1
700 0.057 0.071 0.672 1 0.068 0.079 0.882 1

Gsls 100 0.043 0.053 0.939 0.987 0.054 0.055 1 1
300 0.047 0.05 1 1 0.041 0.044 1 1
500 0.061 0.064 1 1 0.06 0.053 1 1
700 0.049 0.048 1 1 0.058 0.066 1 1

Gogmm 100 0.05 0.045 0.587 0.998 0.041 0.056 0.739 1
300 0.046 0.056 0.77 1 0.05 0.044 0.897 1
500 0.053 0.059 0.803 1 0.047 0.066 0.954 1
700 0.04 0.048 0.841 1 0.045 0.062 0.983 1

DDsls 100 0.043 0.053 0.939 0.987 0.054 0.055 0.987 1
300 0.047 0.05 1 1 0.041 0.044 1 1
500 0.061 0.064 1 1 0.06 0.053 1 1
700 0.049 0.048 1 1 0.058 0.066 1 1

DDogmm 100 0.048 0.051 0.432 1 0.045 0.059 0.521 1
300 0.047 0.053 0.581 1 0.053 0.045 0.677 1
500 0.055 0.061 0.626 1 0.044 0.064 0.763 1
700 0.038 0.046 0.65 1 0.047 0.059 0.806 1

The SAR model: λ0=0.6, β10=2, β20=1, and σ0=1.
The MESS model: μ0=−1.6094, β10

ex =2, β20
ex =1, and σ0

ex=1.
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L ¼ 5; �L ¼ 15
	 


and L ¼ 14; �L ¼ 20
	 


. These values of L and �L are selected
because they have different implications for the proportion of units lo-
cated in the northeastern part of the grid. L ¼ 5; �L ¼ 15

	 

refers to a

case where about 80% of the units are located in the northeastern quad-
rant while L ¼ 14; �L ¼ 20

	 

implies that about 32% of the units are locat-

ed in the northeastern quadrant. According to Arraiz et al. (2010), these
two cases of Wn correspond to a “space” where units located in the
northeastern portion of that space are closer to each other and have
more neighbors than units located in other portions of that space.19

The value of other parameters in the two models are the same as in the
homoskedastic case. The test statistics considered here are still the
Wald test statistic, the DD test statistic and the G test statistic. However,
thedifferences are:firstwe use, respectively, the RGMMmethod20 or the
N2SLSmethod to estimate the SAR or theMESSmodel in order to obtain
their predictors; second, the estimationmethod of the augmentedmodel
is, respectively, the FORGMMmethod and the GNSLSmethod for the SAR
model and the MESS model.21

Finally, we conduct bootstrap J-tests to investigate the finite sam-
ple properties of the test statistics. Burridge and Fingleton (2010)
suggest the bootstrap method for the J-tests for the SAR model with
various Wn's in order to correct the size-inflation problem for the
test statistics. We also utilize the bootstrap method for comparison
purpose. The bootstrap method applied here is the residual boot-
strap.22 Consider the homoskedastic case first. If the null model is
the SAR model,23 then the resampling scheme is:

Step 1: Compute the J-test statistics as in Section 3.1
Step 2: Use V̂ n from the ML estimation of the SAR model as the build-

ing block, draw a random sample using sampling with
replacement; call this resampled residuals V̂ b

n.
Step 3: Use λ̂n, β̂1n and β̂2n from the ML estimation, generate

Yb
n ¼ In−λ̂nWn

� �−1
lnβ̂1n þ X2nβ̂2n þ V̂ b

n

� �
:

Step 4: Calculate the J-test statistics using the Yn
b sample.

Step 5: Repeat steps 2–4 for 99 times to create a bootstrap sample for
the J-test statistics. If the proportion of the 99 bootstrap
repetitions that exceed the observed J-test statistics is less
than 5%, then reject the null hypothesis.

For the models with unknown heteroskedasticity, we use the wild
bootstrap approach suggested by MacKinnon (2009).24 Denote

X̃n ¼ ln;X2nð Þ. We use the diagonals of X̃nðX̃
′

n X̃nÞ−1 X̃
′

n to rescale the
residuals. If the null model is the SAR model, the resampling scheme is:

Step 1: Compute the J-test statistics as in Section 4.1
Step 2: Rescale the estimated residuals V̂ n derived from the RGMM

method by

f V̂ ni

� �
¼ V̂ ni

1−Bið Þ1
2

where Bi is the ith diagonal of X̃nðX̃
′

n X̃nÞ−1 X̃
′

n;
19 Arraiz et al. (2010) argue that one can think of the locations of the states in the US.
The states in the northeastern part of the US are closer to each other and have more
neighbors, compared to the western states.
20 In the experiment we use the RGMM method with identity matrix as the weight
matrix to estimate the SAR model.
21 The IV matrix used is still Qn=[ln, X2n, WnX2n, Wn

2X2n, Wn
3X2n]. For the FORGMM

method, we use Qn as the IV matrix for the linear moments, and Wn, W
2
n−1

ntr W2
n

� �
In

for the quadratic moments.
22 For more details, see MacKinnon (2009).
23 If the null model is the MESS model, then the resampling scheme is similar.
24 We cannot use the residual bootstrap when the error terms are independent but
with unknown heteroskedasticity. To simulate the wild bootstrap error terms, we mul-
tiply the rescaled residuals by some random variable with mean 0 and variance 1. So
the wild bootstrap error terms will have about the same variance as the true error
terms. And the wild bootstrap dgp should capture the essential features of the true
dgp. For more discussion, see MacKinnon (2009).
Step 3: generate n random numbers τib for i=1, 2, …, n, from the
Rademacher distribution, where τib=1 with probability 1

2

and τib=−1 with probability 1
2.

Step 4: Denote ξi ¼ f V̂ ni

� �
� τbi for i=1, …, n and ξ=(ξ1′, …, ξn′)′.

Using λ̂n, β̂1n and β̂2n derived from the RGMM method,
generate

Yb
n ¼ In−λ̂nWn

� �−1
lnβ̂1n þ X2nβ̂2n þ ξ
� �

:

Step 5: Calculate the J-test statistics using the Yn
b sample.

Step 6: Repeat steps 2–5 for 99 times to create a bootstrap sample for
the J-test statistics. If the proportion of the 99 bootstrap
repetitions that exceed the observed J-test statistics is less
than 5%, then reject the null hypothesis.

5.2. Monte Carlo results

Tables 1 and 2 summarize the sizes and powers of the J-test statistics
when the null model is the SAR model with parameter values P-V1 and
P-V2. The empirical sizes of the Wald test statistics based upon the
2SLS method are reasonable for all the sample sizes. However, there
are some size distortions for the Wald test statistics based upon the
FOGMM method. For instance, in Table 2, when the sample size is 100,
we observe a size of 0.238 for the Wald statistic based upon the
FOGMM method, using the second predictor. The size distortions de-
crease as sample sizes increase. For the G test statistics and the DD test
statistics, the empirical sizes seem reasonable although the DD test sta-
tistics using the first predictor based on the FOGMM method do not
have enough powerwhen the sample size is small. All three test statistics
from the second predictor tend to be more powerful than test statistics
from the first predictor, suggesting that calculating our predictor
based on the structural form of the MESS model can help us to reject
the wrong null model specification more frequently.25 Lastly, compare
25 For the J-test for variousWn's in Kelejian and Piras (2011), they have a similar conclusion.



Table 2
Size and power of the J-test statistics under H0: Yn=λWnYn+ lnβ1+X2nβ2+Vn.

n x=χ2(3) x=U(0, 10)

Size Power Size Power

Yn|1 Yn|2 Yn|1 Yn|2 Yn|1 Yn|2 Yn|1 Yn|2

Wsls 100 0.057 0.053 0.279 0.382 0.054 0.052 0.376 0.507
300 0.05 0.047 0.742 0.866 0.054 0.045 0.855 0.951
500 0.066 0.066 0.898 0.975 0.054 0.052 0.96 0.998
700 0.042 0.048 0.962 0.996 0.053 0.065 0.987 1

Wogmm 100 0.093 0.238 0.405 0.664 0.094 0.234 0.432 0.691
300 0.062 0.149 0.577 0.996 0.059 0.181 0.507 1
500 0.058 0.114 0.662 1 0.048 0.13 0.51 1
700 0.052 0.093 0.727 1 0.059 0.113 0.588 1

Gsls 100 0.057 0.053 0.279 0.382 0.054 0.052 0.376 0.507
300 0.05 0.047 0.742 0.866 0.054 0.045 0.855 0.955
500 0.066 0.066 0.898 0.975 0.054 0.052 0.96 0.998
700 0.042 0.048 0.962 0.996 0.053 0.065 0.987 1

Gogmm 100 0.046 0.044 0.15 0.686 0.046 0.056 0.162 0.803
300 0.045 0.047 0.281 0.997 0.041 0.042 0.238 1
500 0.048 0.054 0.322 1 0.042 0.053 0.294 1
700 0.056 0.04 0.408 1 0.046 0.059 0.332 1

DDsls 100 0.057 0.053 0.279 0.382 0.054 0.052 0.376 0.507
300 0.05 0.047 0.742 0.866 0.054 0.045 0.855 0.951
500 0.066 0.066 0.898 0.975 0.054 0.052 0.96 0.998
700 0.042 0.048 0.962 0.996 0.053 0.065 0.987 1

DDogmm 100 0.056 0.055 0.299 0.801 0.051 0.061 0.278 0.876
300 0.049 0.047 0.523 0.998 0.045 0.041 0.426 1
500 0.048 0.056 0.63 1 0.041 0.053 0.459 1
700 0.055 0.043 0.708 1 0.047 0.059 0.513 1

The SAR model: λ0=0.6, β10=2, β20=0.5, and σ0 ¼
ffiffiffi
2

p
.

The MESS model: μ0=−1.6094, β10
ex =2, β20

ex =0.5, and σex
0 ¼

ffiffiffi
2

p
.

Table 4
Size and power of the J-test statistics under H0: Yn=λWnYn+ lnβ1+X2nβ2+Vn.

n x=χ2(3) x=U(0, 10)

Size Power Size Power

Yn|1 Yn|2 Yn|1 Yn|2 Yn|1 Yn|2 Yn|1 Yn|2

Wsls 100 0.061 0.051 0.06 0.041 0.06 0.051 0.054 0.052
300 0.059 0.044 0.069 0.063 0.058 0.045 0.061 0.059
500 0.068 0.053 0.077 0.08 0.054 0.046 0.064 0.082
700 0.055 0.05 0.068 0.08 0.056 0.066 0.071 0.106

Wogmm 100 0.071 0.182 0.077 0.298 0.076 0.174 0.081 0.282
300 0.047 0.1 0.121 0.216 0.056 0.101 0.131 0.205
500 0.051 0.091 0.18 0.186 0.048 0.079 0.157 0.175
700 0.043 0.058 0.156 0.55 0.055 0.058 0.167 0.171

Gsls 100 0.061 0.051 0.06 0.041 0.06 0.051 0.054 0.052
300 0.059 0.044 0.069 0.063 0.058 0.045 0.061 0.059
500 0.068 0.053 0.077 0.08 0.054 0.046 0.064 0.082
700 0.055 0.05 0.068 0.08 0.056 0.066 0.071 0.106

Gogmm 100 0.052 0.042 0.045 0.03 0.049 0.049 0.042 0.04
300 0.045 0.047 0.039 0.094 0.046 0.041 0.035 0.077
500 0.047 0.056 0.044 0.127 0.042 0.053 0.036 0.118
700 0.055 0.04 0.043 0.159 0.045 0.063 0.043 0.197

DDsls 100 0.061 0.051 0.06 0.041 0.06 0.051 0.054 0.052
300 0.059 0.044 0.069 0.063 0.058 0.045 0.061 0.059
500 0.068 0.053 0.077 0.08 0.054 0.046 0.064 0.082
700 0.055 0.05 0.068 0.08 0.056 0.066 0.071 0.106

DDogmm 100 0.051 0.035 0.046 0.038 0.048 0.036 0.044 0.045
300 0.047 0.032 0.042 0.09 0.047 0.021 0.036 0.076
500 0.046 0.038 0.044 0.122 0.04 0.029 0.036 0.121
700 0.054 0.022 0.045 0.157 0.045 0.029 0.043 0.192

The SAR model: λ0=0.4, β10=2, β20=0.5, and σ0 ¼
ffiffiffi
2

p
.

The MESS model: μ0=−0.5108, β10
ex =2, β20

ex =0.5, and σex
0 ¼

ffiffiffi
2

p
.
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Table 1with Table 2, all of the test statistics aremore powerfulwhen the
variation in the exogenous regressor X2n is dominant.

Tables 3 and 4 provide the sizes and powers of the J-test statistics
when the null model is the SAR model with parameter values P-V3
and P-V4. The empirical sizes of all test statistics are reasonable ex-
cept that there are still some over-rejections for the Wald test statis-
tics based upon the FOGMM method. More importantly, compared
with Tables 1 and 2, the empirical powers of all statistics are smaller
Table 3
Size and power of the J-test statistics under H0: Yn=λWnYn+ lnβ1+X2nβ2+Vn.

n x=χ2(3) x=U(0, 10)

Size Power Size Power

Yn|1 Yn|2 Yn|1 Yn|2 Yn|1 Yn|2 Yn|1 Yn|2

Wsls 100 0.058 0.051 0.063 0.078 0.051 0.055 0.061 0.083
300 0.04 0.046 0.137 0.197 0.042 0.047 0.167 0.21
500 0.055 0.06 0.235 0.295 0.045 0.049 0.323 0.371
700 0.049 0.051 0.331 0.381 0.064 0.062 0.457 0.494

Wogmm 100 0.165 0.341 0.234 0.223 0.162 0.299 0.211 0.205
300 0.098 0.185 0.147 0.171 0.094 0.189 0.161 0.118
500 0.086 0.14 0.131 0.131 0.084 0.115 0.163 0.104
700 0.066 0.107 0.112 0.107 0.073 0.116 0.143 0.117

Gsls 100 0.058 0.051 0.063 0.078 0.051 0.055 0.061 0.083
300 0.04 0.046 0.137 0.197 0.042 0.047 0.167 0.21
500 0.055 0.06 0.235 0.295 0.045 0.049 0.323 0.371
700 0.049 0.051 0.331 0.381 0.064 0.062 0.457 0.494

Gogmm 100 0.051 0.041 0.06 0.071 0.043 0.048 0.043 0.079
300 0.045 0.044 0.052 0.218 0.05 0.047 0.062 0.239
500 0.052 0.065 0.066 0.325 0.046 0.058 0.067 0.407
700 0.042 0.042 0.054 0.465 0.048 0.065 0.067 0.536

DDsls 100 0.058 0.051 0.063 0.078 0.051 0.055 0.061 0.083
300 0.04 0.046 0.137 0.197 0.042 0.047 0.167 0.21
500 0.055 0.06 0.235 0.295 0.045 0.049 0.323 0.371
700 0.049 0.051 0.331 0.381 0.064 0.062 0.457 0.494

DDogmm 100 0.05 0.043 0.049 0.065 0.044 0.049 0.045 0.078
300 0.046 0.042 0.044 0.219 0.052 0.05 0.06 0.235
500 0.053 0.061 0.067 0.323 0.046 0.057 0.067 0.409
700 0.041 0.042 0.052 0.467 0.05 0.063 0.067 0.537

The SAR model: λ0=0.4, β10=2, β20=1, and σ0=1.
The MESS model: μ0=−0.5108, β10

ex =2, β20
ex =1, and σ0

ex=1.
when we only have moderate spatial dependence for λ and μ. The
situation becomes obvious in Table 4, with larger σ ¼ σ ex ¼

ffiffiffi
2

p
. All

three statistics do not have enough power, which suggests that it is
more difficult to distinguish between the SAR and the MESS models
withmoderate spatial dependence and large variance in disturbances.

Tables 5 and 6 provide the sizes and powers of the J-test statistics
when the null model is the MESS model with parameter values P-V5
and P-V6. The empirical sizes and powers of the G test statistics and
the DD test statistics are reasonable for the two sets of parameter values.
However, there are serious over-rejections for the Wald test statistics
with P-V6, in which we only have moderate spatial dependence.

Tables 7 and 8 summarize the sizes and powers of the J-test statis-
tics using the SAR model with unknown heteroskedasticity as the
null. With λ0=0.6 and μ0=−1.6094, all of the empirical sizes and
powers seem reasonable except that the test statistics based upon
the FORGMM method using the first predictor do not have enough
power. With λ0=0.4 and μ0=−0.5108, the empirical powers of all
test statistics decrease. Thus it is again harder to distinguish between
Table 5
Size and power of the J-test statistics under H0: Snex(μ)Yn= lnβ1

ex+X2nβ2
ex+Vn.

n x=χ2(3) x=U(0, 10)

Size Power Size Power

Yn|1 Yn|2 Yn|1 Yn|2 Yn|1 Yn|2 Yn|1 Yn|2

Wsls 100 0.073 0.089 0.571 0.267 0.056 0.075 0.712 0.198
300 0.052 0.066 0.887 0.238 0.056 0.046 0.954 0.232
500 0.073 0.062 0.954 0.22 0.054 0.054 0.985 0.228
700 0.047 0.047 0.987 0.182 0.052 0.055 0.995 0.198

Gsls 100 0.054 0.052 0.336 0.331 0.05 0.049 0.336 0.331
300 0.039 0.036 0.674 0.666 0.054 0.055 0.674 0.666
500 0.071 0.06 0.868 0.867 0.054 0.047 0.868 0.867
700 0.044 0.048 0.961 0.963 0.065 0.065 0.988 0.986

DDsls 100 0.053 0.048 0.199 0.257 0.052 0.049 0.348 0.428
300 0.037 0.036 0.613 0.648 0.05 0.052 0.786 0.825
500 0.07 0.057 0.817 0.845 0.055 0.045 0.932 0.945
700 0.044 0.049 0.92 0.944 0.047 0.048 0.971 0.975

The SAR model: λ0=0.6, β10=2, β20=1, and σ0=1.
The MESS model: μ0=−1.6094, β10

ex =2, β20
ex =1, and σ0

ex=1.



Table 7
Size and power of J-test statistics with unknown heteroskedasticity under H0: Yn=
λWnYn+ lnβ1+X2nβ2+Vn.

L, L ̅ x=χ2(3) x=U(0, 10)

Size Power Size Power

Yn|1 Yn|2 Yn|1 Yn|2 Yn|1 Yn|2 Yn|1 Yn|2

Wrsls L=5, L ̅=15 0.049 0.045 0.998 1 0.055 0.048 1 1
L=14, L ̅=20 0.047 0.048 0.999 1 0.047 0.044 1 1

Worgmm L=5, L ̅=15 0.053 0.054 0.228 1 0.058 0.072 0.159 1
L=14, L ̅=20 0.063 0.056 0.173 1 0.076 0.037 0.182 1

Grsls L=5, L ̅=15 0.049 0.045 0.998 1 0.055 0.048 1 1
L=14, L ̅=20 0.047 0.048 0.999 1 0.047 0.044 1 1

Gorgmm L=5, L ̅=15 0.044 0.051 0.247 1 0.042 0.051 0.836 1
L=14, L ̅=20 0.041 0.051 0.243 1 0.056 0.046 0.818 1

DDrsls L=5, L ̅=15 0.049 0.045 0.998 1 0.055 0.048 1 1
L=14, L ̅=20 0.047 0.048 0.999 1 0.047 0.044 1 1

DDorgmm L=5, L ̅=15 0.046 0.049 0.214 1 0.043 0.053 0.489 1
L=14, L ̅=20 0.044 0.062 0.17 1 0.059 0.049 0.514 1

The SAR model: λ0=0.6, β10=2, and β20=1.
The MESS model: μ0=−1.6094, β10

ex =2, and β20
ex =1.

Sample size is 545 for L ¼ 5; �L ¼ 15. Sample size is 520 for L ¼ 14; �L ¼ 20.
Wrsls: the Wald test statistic based on the Robust 2SLS method.
Grsls: the G test statistic based on the Robust 2SLS method.
DDrsls: the DD test statistic based on the Robust 2SLS method.
Worgmm: the Wald test statistic based on the FORGMM method.
Gorgmm: the G test statistic based on the FORGMM method.
DDorgmm: the DD test statistic based on the FORGMM method.

Table 6
Size and power of the J-test statistics under H0: Snex(μ)Yn= lnβ1

ex+X2nβ2
ex+Vn.

n x=χ2(3) x=U(0, 10)

Size Power Size Power

Yn|1 Yn|2 Yn|1 Yn|2 Yn|1 Yn|2 Yn|1 Yn|2

Wsls 100 0.044 0.373 0.082 0.389 0.058 0.326 0.087 0.398
300 0.098 0.266 0.317 0.243 0.11 0.199 0.482 0.255
500 0.1 0.196 0.643 0.187 0.1 0.138 0.766 0.228
700 0.085 0.131 0.786 0.148 0.092 0.129 0.849 0.183

Gsls 100 0.051 0.052 0.112 0.116 0.049 0.049 0.269 0.207
300 0.037 0.041 0.153 0.146 0.052 0.055 0.264 0.263
500 0.06 0.053 0.219 0.218 0.045 0.05 0.331 0.326
700 0.045 0.046 0.252 0.256 0.064 0.065 0.387 0.384

DDsls 100 0.026 0.023 0.059 0.055 0.028 0.021 0.273 0.273
300 0.028 0.036 0.044 0.057 0.037 0.042 0.284 0.312
500 0.043 0.043 0.083 0.144 0.042 0.048 0.339 0.388
700 0.037 0.043 0.162 0.215 0.06 0.063 0.439 0.48

The SAR model: λ0=0.4, β10=2, β20=1, and σ0=1.
The MESS model: μ0=−0.5108, β10

ex =2, β20
ex =1, and σ0

ex=1.
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the SARmodel and the MESSmodel unless we have strong spatial inter-
action effect. Also there are some size distortions for theWald test statis-
tics based on the FORGMMmethod.

Tables 9 and 10 summarize the sizes and powers of the J-test sta-
tistics using the MESS model with unknown heteroskedasticity as the
null. Otherwise, the sizes and powers of all test statistics are reason-
able in Table 9. But the empirical power decreases when we only
have moderate spatial dependence in Table 10. Specifically, the DD
test statistics do not have power. There are over-rejections for the
Wald test statistics using the second predictor in Table 10.

Tables 11–14 provide the sizes and powers of the bootstrappedWald
test statistics based upon the FOGMM method, using the SAR model as
the null. All of the bootstrapped test statistics have empirical sizes much
closer to the nominal 5% level than the asymptotic test statistics in the
previous tables and they seem to have a better control over size for dif-
ferent parameter values.26 However, they do not have enough empirical
power with moderate spatial dependence.

Table 15 provides the sizes and powers of the bootstrapped Wald
test statistics based on the N2SLS method, using the MESS model as
the null, with parameter values P-V6. All the empirical sizes of test
statistics are closer to the nominal 5% level than that of the asymptot-
ic test statistics. For instance, when the sample size is 100, the empir-
ical size of the Wald test statistic from the second predictor is 0.05,
compared with a size of 0.373 of the asymptotic Wald test statistic
in Table 6. Again those bootstrapped Wald test statistics do not
have enough power.

Table 16 summarizes the sizes and powers of the bootstrapped
Wald test statistics based on the FORGMM method, using the SAR
model with unknown heteroskedasticity as the null. With λ0=0.4
and μ0=−0.5108, the sizes of test statistics are closer to the nominal
5% level than the asymptotic test statistics in Table 8. But the empir-
ical powers are not strong, especially for the Wald test statistics
from the first predictor.

Finally, Table 17 summarizes the sizes and powers of the
bootstrapped Wald test statistics based on the GN2SLS method,
using the MESS model with unknown heteroskedasticity as the null.
With λ0=0.4 and μ0=−0.5108, the sizes of test statistics are closer
to the nominal 5% level than the asymptotic test statistics in
Table 10. But the empirical powers are not strong.

6. Conclusion

Empirical researchers in spatial studies frequently utilize the SAR
model, which implies a geometrical decay pattern of spatial externalities.
26 For the bootstrap J-test for various Wn's in Burridge and Fingleton (2010), they
have similar results.
On the other hand, theMESSmodel has an exponential decay pattern. In
this paper, we consider using the J-test procedure for the selection be-
tween the SARmodel and theMESSmodel. We construct J-test statistics
by using both the 2SLS method as well as the extended GMMmethod in
Lee (2007). We derive several test statistics under the GMM framework.
In addition to the testing procedures, we investigate the behavior of
those J-test statistics in terms of pseudo true values, which provide a
clearer view of the augmented variables used in testing. We also extend
the J-test procedure into the setting when error terms in the model are
independent but with unknown heteroskedasticity. We have also used
bootstrapped procedures to compare with those based on conventional
asymptotic distributions of the test statistics. From our Monte Carlo re-
sults, we can conclude that when the spatial dependence is strong and
the sample size is not small, the J-test statistics can have good power to
distinguish the SAR and MESS models.

One limitation of this paper is that we rely on setting Wn in the
MESS model to be a conventional spatial weight matrix without any
unknown parameter. LeSage and Pace (2009) has considered a more

flexible extension of the MESS model, in which Wn ¼ ∑p
i¼1

ϕiNi

∑p
i¼1 ϕi

� �
.

Here p is the number of nearest neighbors and 0bϕb1 represents a
decay factor applied to each of the nearest neighbor weight matrices
Ni, which is an n×n weight matrix consisting non-zero elements for
the ith closest neighbor. Both p and ϕ are unknown parameters that
must be estimated. As suggested by LeSage and Pace (2009), this
weightmatrixwould be flexible enough to approximatemore conven-
tional spatial weight matrices.27 Therefore it would be desirable to
consider the model selection problem between the SAR model and
that extension of the MESS model. LeSage and Pace (2009) consider
Bayesian MCMC estimation to produce estimates of parameters of
the extension of the MESS model. Thus we could follow Bayesian
model comparison procedures in Zellner (1971) in principle to calcu-
late and compare the posterior probabilities of the SAR model and the
extended MESS model. It would also be a promising research to con-
sider classical estimation methods for that extension of the MESS
model and derive J-test procedures for this model selection problem.
27 As pointed out by a referee, the more flexible specification would make it possible
for the MESS exponential decay specification to more closely replicate the SAR geomet-
ric pattern of decay.



Table 8
Size and power of J-test statistics with unknown heteroskedasticity under H0: Yn=λWnYn+ lnβ1+X2nβ2+Vn.

L, L ̅ x=χ2(3) x=U(0, 10)

Size Power Size Power

Yn|1 Yn|2 Yn|1 Yn|2 Yn|1 Yn|2 Yn|1 Yn|2

Wrsls L=5, L ̅=15 0.04 0.044 0.124 0.158 0.049 0.053 0.182 0.219
L=14, L ̅=20 0.049 0.049 0.129 0.17 0.045 0.05 0.177 0.205

Worgmm L=5, L ̅=15 0.047 0.093 0.108 0.33 0.06 0.134 0.119 0.339
L=14, L ̅=20 0.059 0.147 0.09 0.402 0.076 0.111 0.122 0.347

Grsls L=5, L ̅=15 0.04 0.044 0.124 0.158 0.049 0.053 0.182 0.219
L=14, L ̅=20 0.049 0.049 0.129 0.17 0.045 0.05 0.177 0.205

Gorgmm L=5, L ̅=15 0.045 0.047 0.268 0.547 0.043 0.052 0.139 0.514
L=14, L ̅=20 0.037 0.058 0.233 0.564 0.048 0.043 0.154 0.518

DDrsls L=5, L ̅=15 0.04 0.044 0.124 0.158 0.049 0.053 0.182 0.219
L=14, L ̅=20 0.049 0.049 0.129 0.17 0.045 0.05 0.177 0.205

DDorgmm L=5, L ̅=15 0.049 0.041 0.27 0.551 0.044 0.053 0.15 0.528
L=14, L ̅=20 0.04 0.068 0.236 0.582 0.056 0.049 0.167 0.529

The SAR model: λ0=0.4, β10=2, and β20=1.
The MESS model: μ0=−0.5108, β10

ex =2, and β20
ex =1.

Sample size is 545 for L ¼ 5; �L ¼ 15. Sample size is 520 for L ¼ 14; �L ¼ 20.
Wrsls: the Wald test statistic based on the Robust 2SLS method.
Grsls: the G test statistic based on the Robust 2SLS method.
DDrsls: the DD test statistic based on the Robust 2SLS method.
Worgmm: the Wald test statistic based on the FORGMM method.
Gorgmm: the G test statistic based on the FORGMM method.
DDorgmm: the DD test statistic based on the FORGMM method.
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Appendix A. Some useful lemma

Lemmas A.1–A.6 are some basic results on quadratic form, law of
large numbers, and central limit theorems, which are useful for our
analysis. They can be found, e.g., in Kelejian and Prucha (1998) and/
or Lee (2007).

Lemma A.1. Suppose elements of the sequences of n-dimensional
column vectors {Z1n} and {Z2n} are uniformly bounded. If {An} are
uniformly bounded in either row or column sums in absolute value,
then |Z′1nAnZ2n|=O(n).

Lemma A.2. Suppose that {An} are uniformly bounded in both row and
column sums in absolute value. The vn1, ⋯, vnn are i.i.d with zero mean
and its fourth moment exists. Then, E(Vn′AnVn)=O(n), var(Vn′AnVn)=
O(n), Vn′AnVn=Op(n), and 1

n V
′
nAnVn− 1

n EV
′
nAnVn ¼ op 1ð Þ.

Lemma A.3. Suppose that vn1, …, vnn are i.i.d random variables with
zero mean, finite variance σ 2 and finite fourth moment μ4. Then, for
any two square n×n matrices A and B,

EðV ′
nAVnV

′
nBVnÞ ¼ ðμ4−3σ4

0Þvec′D Að ÞvecD Bð Þ
þ σ4

0 tr Að Þtr Bð Þ þ tr AðBþ B′Þ
� �h i

:

Lemma A.4. Suppose that the elements of the n×k matrices Xn are uni-
formly bounded for all n; and limn→∞ 1

n X
′
nXn

� �
exists and is nonsingular,

then the projectors, Xn(Xn′Xn)−1Xn′ and In−Xn(Xn′Xn)−1Xn′, are
uniformly bounded in both row and column sum norms.

Lemma A.5. Suppose that {An} is a sequence of n×nmatrices with its col-
umn sums being uniformly bounded in absolute value, elements of the n×k
matrix Cn are uniformly bounded, and vn1, ⋯, vnn are i.i.d with zero mean

and finite variance σ 2. Then, 1ffiffi
n

p C′
nAnVn ¼ Op 1ð Þ and 1

n C
′
nAnVn ¼ op 1ð Þ.

Furthermore, if the limit of 1
n C

′
nAnA

′
nCn exists and is positive definite,

then 1ffiffi
n

p C′
nAnVn →

D
N 0;σ2

0 limn→∞ 1
n C

′
nAnA

′
nCn

��
.

Lemma A.6. Suppose that {An} is a sequence of symmetric n×n
matrices with row and column sums uniformly bounded in absolute
value and bn=(bn1, …, bnn)′ is a n-dimensional vector such that
supn
1
n∑n

i¼1 bnij j2þη1<∞ for some η1>0. The Vn1, …, Vnn are i.i.d
random variables with zeros mean and finite variance σ2, and its
moment E(|V|4+2δ) for some δ>0 exists. Let σQn

2 be the variance of
Qn where Qn=Vn′AnVn+bn′Vn−σ2tr(An). Assume that the variance

σQn

2 is bounded away from zero at the rate n. Then, Qn
σQn

� �
→
D
N 0;1ð Þ.

Lemmas A.7–A.11 are from, for example, Lin and Lee (2010) and
also Kelejian and Prucha (2010).

Lemma A.7. Assume that vni's have zero mean and finite variances, and
are mutually independent. Let An=(an,ij) and Bn=(bn,ij) be two square
matrices of dimension n. Then, E(AnVn(BnVn)′)=AnΣnBn′. If the diagonal
of Bn is zero, E(AnVnVn′BnVn)=0. Furthermore, if both An and Bn have
zero diagonals,

EðV ′
nAnVnV

′
nBnVnÞ ¼

Xn
i¼1

Xn
j¼1

an ;ij bn;ij þ bn;ji
� �

σ2
niσ

2
nj ¼ tr ∑nAn∑nðB′

n þ BnÞ
h i

;

where Σn=Diag(σn1
2 , …, σnn

2 ) with σni
2=E(vni2 ) and Vn=(vn1, …, vnn)′.

Lemma A.8. For any square matrices An= [an,ij] of dimension n, assume
that vni's have a zero mean and are mutually independent. Then

EðV ′
nAnVnÞ ¼

Xn
i¼1

an;iiσ
2
ni ¼ tr ∑nAnð Þ;

VarðV ′
nAnVnÞ ¼

Xn
i¼1

a2n;ii Eðv4niÞ−3σ4
ni

h i
þ
Xn
i¼1

Xn
j¼1

an;ij an;ij þ an;ji
� �

σ2
niσ

2
nj

¼
Xn
i¼1

a2n;ii Eðv4niÞ−3σ4
ni

h i
þ tr ∑nAn∑n A′

n þ An

� �h i
;

where Σn=Diag(σn1
2 , …, σnn

2 ) with σni
2=E(vni2 ) and Vn=(vn1, …, vnn)′.

Lemma A.9. Suppose {An} are uniformly bounded in both rowand column
sums in absolute value and vni's have a zero mean and are mutually inde-
pendent where its sequence of variance {σni

2} is bounded, and, in addition, if
an,ii≠0 for some i, the sequence of fourth moments {μni,4} is bounded.
Then, E(Vn′AnVn)=O(n), Var(Vn′AnVn)=O(n), Vn′AnVn=Op(n) and
1
n V

′
nAnVn− 1

n EðV ′
nAnVnÞ ¼ op 1ð Þ.



Table 10
Size and power of J-test statistics with unknown heteroskedasticity under H0: Snex(μ)
Yn= lnβ1

ex+X2nβ2
ex+Vn.

L, L ̅ x=χ2(3) x=U(0, 10)

Size Power Size Power

Yn|1 Yn|2 Yn|1 Yn|2 Yn|1 Yn|2 Yn|1 Yn|2

Wrsls L=5, L ̅=15 0.118 0.171 0.268 0.386 0.087 0.153 0.346 0.387
L=14, L ̅=20 0.107 0.183 0.267 0.323 0.131 0.149 0.13 0.141

Grsls L=5, L ̅=15 0.052 0.051 0.164 0.174 0.052 0.048 0.221 0.245
L=14, L ̅=20 0.054 0.054 0.13 0.141 0.053 0.053 0.236 0.256

DDrsls L=5, L ̅=15 0.041 0.034 0.08 0.084 0.033 0.03 0.125 0.146
L=14, L ̅=20 0.038 0.037 0.062 0.069 0.044 0.043 0.147 0.17

The SAR model: λ0=0.4, β10=2, and β20=1.
The MESS model: μ0=−0.5108, β10

ex =2, and β20
ex =1.

Sample size is 545 for L ¼ 5; �L ¼ 15. Sample size is 520 for L ¼ 14; �L ¼ 20.
Wrsls: the Wald test statistic based on the GN2SLS method.
Grsls: the G test statistic based on the GN2SLS method.
DDrsls: the DD test statistic based on the GN2SLS method.

Table 9
Size and power of J-test statistics with unknown heteroskedasticity under H0: Snex(μ)
Yn= lnβ1

ex+X2nβ2
ex+Vn.

L, L ̅ x=χ2(3) x=U(0, 10)

Size Power Size Power

Yn|1 Yn|2 Yn|1 Yn|2 Yn|1 Yn|2 Yn|1 Yn|2

Wrsls L=5, L ̅=15 0.063 0.073 0.77 0.391 0.052 0.064 0.829 0.392
L=14, L ̅=20 0.057 0.07 0.741 0.352 0.059 0.061 0.796 0.378

Grsls L=5, L ̅=15 0.064 0.053 0.482 0.484 0.052 0.051 0.606 0.619
L=14, L ̅=20 0.047 0.056 0.439 0.449 0.056 0.05 0.589 0.599

DDrsls L=5, L ̅=15 0.065 0.047 0.452 0.49 0.051 0.052 0.603 0.618
L=14, L ̅=20 0.047 0.052 0.407 0.446 0.058 0.047 0.577 0.611

The SAR model: λ0=0.6, β10=2, and β20=1.
The MESS model: μ0=−1.6094, β10

ex =2, and β20
ex =1.

Sample size is 545 for L ¼ 5; �L ¼ 15. Sample size is 520 for L ¼ 14; �L ¼ 20.
Wrsls: the Wald test statistic based on the GN2SLS method.
Grsls: the G test statistic based on the GN2SLS method.
DDrsls: the DD test statistic based on the GN2SLS method.
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Lemma A.10. Suppose that An is an n×n matrix with its column sums
being uniformly bounded in absolute value, elements of the n×k matrix
Cn are uniformly bounded, and elements vni of Vn=(vn1, …, vnn)′ are
mutually independent with zero mean and finite third absolute
moments, which are uniformly bounded for all n and i.

Then, 1ffiffi
n

p C′
nAnVn ¼ Op 1ð Þ and 1

n C
′
nAnVn ¼ op 1ð Þ. Furthermore, if the

limit of 1
n C

′
nAn∑nA

′
nCn exists and is positive definite, then

1ffiffi
n

p C′
nAnVn →

D N 0; limn→∞ 1
n C

′
nAn∑nA

′
nCn

� �
.

Lemma A.11. Suppose that {An} is a sequence of symmetric n×nmatrices
with row and column sums uniformly bounded in absolute value and bn=
[bni] is a n-dimensional column vector such that supn

1
n∑n

i¼1 bni 2þς1b∞
����

for some ς1>0. Furthermore, vn1, …, vnn are mutually independent, with
zero mean and moments higher than four exist such that E(|υni|4+ζ2) for
some ς2>0 are uniformly bounded for all n and i.

Let σQn

2 be the variance of Qn where Qn=Vn′AnVn+bn′Vn−tr(AnΣn).

Assume that 1
nσ

2
Qn

is bounded away from zero. Then, Qn
σQn

→
D
N 0;1ð Þ.

Appendix B. Pseudo true values of θ̂exn based upon the QMLmethod

Let θ̂exn be the quasi-maximum likelihood (QML) estimate of θex for the
MESS model. Based on the normal distribution, the log quasi-likelihood
function of the MESS model28 is:

Ln θex
	 
 ¼ −n

2
ln2πσ ex2− 1

2σex2 Sexn μð ÞYn−Xnβ
ex	 
′ Sexn μð ÞYn−Xnβ

ex	 

:

ðB:1Þ

For simplicity, denote E|sar(Ln(θex))≡E(Ln(θex)|H0), the expectation
of the above equation under the null SAR model, which is

Ejsar Ln θex
	 
	 
 ¼ −n

2
ln2πσ ex2− 1

2σ ex2 Ejsar Sexn μð ÞYn−Xnβ
ex	 
′ Sexn μð ÞYn−Xnβ

ex	 
h i
:

ðB:2Þ

With a sample of size n, the pseudo-true value θn|sarex⁎ is defined as

θex�njsar ¼ argmax
θex

Ejsar Ln θex
	 
	 


: ðB:3Þ
28 Here |Sex(μ)|=|exp(μWn)|=exp(trace(μWn))=1 as Wn has a zero diagonal. See
LeSage and Pace (2007) for more details.
For the MESS model, some components of θn|sarex⁎ have simple ex-
pressions that can be reviewed from the concentrated expected func-
tion from Eq. (B.2). Note that the concentrated likelihood function of
Eq. (B.1) in terms of μ is

Ln μð Þ ¼ −n
2

ln2π þ 1ð Þ−n
2
lnσ ex2

n μð Þ; ðB:4Þ

with

βex
n μð Þ ¼ ðX′

nXnÞ−1 X′
nS

ex
n μð ÞYn;

σ ex2
n μð Þ ¼ 1

n
Y ′

nS
ex
n μð Þ′MnS

ex
n μð ÞYn;

where Mn= In−Xn(Xn′Xn)−1Xn′. Correspondingly, the concentrated ex-
pected function for μ from Eq. (B.2) is Hn|sar(μ)=maxβex,σ ex2E|sar(Ln(θex)).
As

Ejsar Sexn μð ÞYn−Xnβ
ex	 
′ Sexn μð ÞYn−Xnβ

ex	 
h i
¼ Sexn μð ÞS−1

n Xnβ0−Xnβ
ex

� �′
Sexn μð ÞS−1

n Xnβ0−Xnβ
ex

� �
þ σ2

0tr S−1
n

′Sexn μð Þ′Sexn μð ÞS−1
n

� �
:

One has βn|sar
ex (μ)=(Xn′Xn)−1Xn′Sn

ex(μ)Sn−1Xnβ0 and

σex2
njsar μð Þ ¼ 1

n
Ejsar

�
Sexn μð ÞYn−Xnβ

ex
njsar μð Þ

� �
′
�
Sexn μð ÞYn−Xnβ

ex
njsar μð Þ

��

¼ 1
n

Sexn μð ÞS−1
n Xnβ0

� �
′
Mn Sexn μð ÞS−1

n Xnβ0

� �
þ σ2

0tr S−1
n

′Sexn μð Þ′Sexn μð ÞS−1
n

� �h i
:

ðB:5Þ

Thus

Hnjsar μð Þ ¼ max
βex ;σex2

Ejsar Ln θex
	 
	 
 ¼ −n

2
ln2π þ 1ð Þ−n

2
lnσ ex2

njsar μð Þ: ðB:6Þ

Based on Eqs. (B.5) and (B.6), the pseudo-true values are μn|sar⁎ =
argmaxμHn|sar(μ), βn|sar

ex⁎ =βn|sar
ex (μn|sar⁎ ), and σn|sar

ex2⁎=σn|sar
ex2 (μn|sar⁎ ).

FollowingWhite (1994), we can discuss the corresponding identifica-
tion uniqueness condition of the parameters in the likelihood function
(B.1) of the MESS model under the null SAR process in terms of μn|sar⁎ .
Let Θμ , a compact subset of R, be the parameter space of μ, and let Θnμ|sar

be a non-empty compact subset of Θμ for n=1, 2, …. Suppose Hn|sar(μ)
is maximized in Θnμ|sar,at μn|sar⁎ for n=1, 2, …. Furthermore, let Snμ|sar(�)
be an open ball in R centered at μn|sar⁎ with a radius �>0. Define the neigh-
borhood Nnμ|sar(�)=Snμ|sar(�)∩Θnμ|sar and its complement Nnμ|sar

c (�). The



Table 12
Bootstrap size and power of the J-test statistics under H0: Yn=λWnYn+
lnβ1+X2nβ2+Vn.

n x=χ2(3) x=U(0, 10)

Size Power Size Power

Yn|1 Yn|2 Yn|1 Yn|2 Yn|1 Yn|2 Yn|1 Yn|2

Wogmm 100 0.055 0.054 0.324 0.568 0.057 0.036 0.348 0.563
300 0.05 0.048 0.592 0.998 0.052 0.062 0.478 0.998
500 0.042 0.057 0.665 1 0.05 0.048 0.546 1
700 0.047 0.05 0.672 1 0.062 0.046 0.541 1

The SAR model: λ0=0.6, β10=2, β20=0.5, and σ0 ¼
ffiffiffi
2

p
.

The MESS model: μ0=−1.6094, β10
ex =2, β20

ex =0.5, and σex
0 ¼

ffiffiffi
2

p
.

Table 11
Bootstrap size and power of the J-test statistics under H0: Yn=λWnYn+
lnβ1+X2nβ2+Vn.

n x=χ2(3) x=U(0, 10)

Size Power Size Power

Yn|1 Yn|2 Yn|1 Yn|2 Yn|1 Yn|2 Yn|1 Yn|2

Wogmm 100 0.045 0.051 0.333 0.517 0.045 0.039 0.376 0.499
300 0.048 0.045 0.516 1 0.045 0.051 0.643 1
500 0.058 0.04 0.593 1 0.053 0.036 0.761 1
700 0.054 0.034 0.692 1 0.057 0.03 0.853 1

The SAR model: λ0=0.6, β10=2, β20=1, and σ0=1.
The MESS model: μ0=−1.6094, β10

ex =2, β20
ex =1, and σ0

ex=1.
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sequence of pseudo-true value μn|sar⁎ is said to be identifiably unique on
Θnμ|sar if either for all �>0 and all n, Nnμ|sar

c (�) is empty, or

lim sup
n→∞

h
max

μ∈Nc
nμjsar �ð Þ

1
n
Hnjsar μð Þ−1

n
Hnjsarðμ�

njsarÞ
i
b 0:

The following assumptionwill ensure that μn|sar⁎ is uniquely identified:

Assumption B.1. For any μ≠μn|sar⁎

lim
n→∞

lnσex2
njsar μð Þ− lnσ ex2

njsarðμ�
njsarÞ

h i
≠0:

Based on the above assumption,we have the stochastic convergence
of the estimator θ̂ex�njsar .

Lemma B.1. Under the null SAR model, given regularity Assumptions
2.1–2.4 and B.1, θ̂exn is a consistent estimator of the pseudo-true value θn|sarex⁎ ,
in the sense that θ̂exn −θex�njsar ¼ op 1ð Þ.

Appendix C. Pseudo true values of θ̂sarn based upon the QMLmethod

The QML of the SAR model is:

Ln θsar
	 
 ¼ −n

2
ln2πσ2 þ ln Sn λð Þj j− 1

2σ2 Sn λð ÞYn−Xnβð Þ′ Sn λð ÞYn−Xnβð Þ:

Its concentrated likelihood function of the SAR model at λ is:

Ln λð Þ ¼ −n
2

ln 2πð Þ þ 1ð Þ þ ln Sn λð Þj j−n
2
lnσ2

n λð Þ; ðC:1Þ

where βn(λ)=(Xn′Xn)−1Xn′Sn(λ)Yn and σn
2 λð Þ ¼ 1

n Y
′
nSn λð Þ′MnSn λð Þ×

Yn. Denote E|ex(Ln(θ
sar))=E(Ln(θsar)|H0). Consequently, the expectation

of the likelihood function under the null MESS model is

Ejex Ln θsar
	 
	 
 ¼ −n

2
ln2πσ2 þ lnjSn λð Þj− 1

2σ2 Ejex Sn λð ÞYn−Xnβð Þ′ Sn λð ÞYn−Xnβð Þ
h i

:

Let θn|exsar⁎ be the pseudo true value of θ̂sarn , which is defined as

θsar�njex ¼ argmax
θsar

Ejex L θsar
	 
	 


:

Let Hn|ex(λ)=maxβ,σ 2Eex(Ln(θsar)). To derive the exact expression
of Hn|ex(λ), we simplify the term E|ex[(Sn(λ)Yn−Xnβ)′(Sn(λ)Yn−
Xnβ)], which is

Sn λð ÞSex−1
n Xnβ

ex
0 −Xnβ

� �
′
Sn λð ÞSex−1

n Xnβ
ex
0 −Xnβ

� �
þ σ2

0tr Sex−1
n

′Sn λð Þ′Sn λð ÞSex−1
n

� �
;

where Sn
ex=Sn

ex(μ0). With βn|ex(λ)=(Xn′ Xn)−1Xn′Sn(λ)Snex−1Xnβ0
ex and

σ2
njex λð Þ ¼ 1

n

�
Sn λð ÞSex−1

n Xnβ
ex
0

� �′
Mn Sn λð ÞSex−1

n Xnβ
ex
0

� �
þ σ2

0tr Sex−1
n

′Sn λð Þ′Sn λð ÞSex−1
n

� ��
:

Hn|ex(λ) can be written as

Hnjex λð Þ ¼ −n
2

ln2π þ 1ð Þ þ ln Sn λð Þj j−n
2
lnσ2

njex λð Þ: ðC:2Þ

The pseudo-true value of λ is defined as λn|ex⁎ =argmaxλHn|ex(λ).
Then, correspondingly, βn|ex⁎ =βn|ex(λn|ex⁎ ) and σn|ex

2⁎ =σn|ex
2 (λn|ex⁎ ).

Let Θλ, a compact subset of R, represent the parameter space of λ,
and let Θnλ|ex be a sequence of non-empty compact subsets of Θλ for
n=1, 2, … such that Hn|ex(λ) is maximized on Θnλ|ex at λn|ex⁎ . Further-
more, let Snλ|ex(�) be an open ball in R centered at λn|ex⁎ with a
radius �>0. Define the neighborhood Nnλ|ex(�)=Snλ|ex(�)∩Θnλ|ex

with its compact complement Nnλ|ex
c (�). The sequence of pseudo-true

value λn|ex⁎ is identifiably unique on Θnλ|ex if either for all �>0 and all
n, Nnλ|ex

c (�) is empty, or

lim sup
n→∞

h
max

λ∈Nc
nλjex �ð Þ

1
n
Hnjex λð Þ−1

n
Hnjexðλ�

njexÞ
i
b 0:

The following assumption will ensure that λn|ex⁎ is uniquely
identified:

Assumption C.1. For any λ≠λn|ex⁎ ,

lim
n→∞

�1
n

h
ln Sn λð Þj j− lnjSnðλ�

njexÞj
i
−1

2

h
lnσ2

njex λð Þ− lnσ2
njexðλ�

njexÞ
i�

≠0:

The following lemma shows that θ̂sarn −θsar�njex ¼ op 1ð Þ.

Lemma C.1. Under the null MESS model and given Assumptions 2.1–2.4,
3.6 and C.1, θ̂sarn is a consistent estimator of the pseudo-true values θn|exsar⁎.

Appendix D. Pseudo true values of θ̂exn based upon the N2SLSmethod

Let gn(ϕ)=Qn′Vn(ϕ) represent the moment equation where
Vn(ϕ)=Sn

ex(μ)Yn−Xnβex. The pseudo true value ϕn|sar⁎ based on the
N2SLS approach can be defined as

ϕ�
njsar ¼ argminEjsargn ϕð Þ′ Q ′

nQn

� �−1
Ejsargn ϕð Þ:

We impose the following assumption on ϕn|sar⁎ .



Table 13
Bootstrap size and power of the J-test statistics under H0: Yn=λWnYn+
lnβ1+X2nβ2+Vn.

n x=χ2(3) x=U(0, 10)

Size Power Size Power

Yn|1 Yn|2 Yn|1 Yn|2 Yn|1 Yn|2 Yn|1 Yn|2

Wogmm 100 0.058 0.038 0.086 0.019 0.051 0.033 0.071 0.022
300 0.051 0.03 0.083 0.015 0.051 0.05 0.101 0.014
500 0.034 0.047 0.099 0.03 0.05 0.04 0.112 0.027
700 0.051 0.046 0.092 0.042 0.056 0.03 0.108 0.036

The SAR model: λ0=0.4, β10=2, β20=1, and σ0=1.
The MESS model: μ0=−0.5108, β10

ex =2, β20
ex =1, and σ0

ex=1.

Table 14
Bootstrap size and power of the J-test statistics under H0: Yn=λWnYn+
lnβ1+X2nβ2+Vn.

n x=χ2(3) x=U(0, 10)

Size Power Size Power

Yn|1 Yn|2 Yn|1 Yn|2 Yn|1 Yn|2 Yn|1 Yn|2

Wogmm 100 0.061 0.049 0.061 0.04 0.059 0.028 0.054 0.031
300 0.049 0.042 0.087 0.039 0.055 0.034 0.101 0.034
500 0.045 0.046 0.156 0.048 0.049 0.031 0.145 0.03
700 0.059 0.054 0.165 0.037 0.048 0.023 0.142 0.025

The SAR model: λ0=0.4, β10=2, β20=0.5, and σ0 ¼
ffiffiffi
2

p
.

The MESS model: μ0=−0.5108, β10
ex =2, β20

ex =0.5, and σex
0 ¼

ffiffiffi
2

p
.
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Assumption D.1. ϕn|sar⁎ is the unique solution of themoment equations
E|sargn(ϕ)=0.

With Assumption D.1 and regularity conditions given in previous
sections, the following lemma shows that ϕ̂n−ϕ�

njsar ¼ op 1ð Þ:

Lemma D.1. Under the null SAR model and given Assumption 2.2–2.4,
3.6, 4.1 and D.1, ϕ̂n is a consistent estimator of ϕn|sar⁎ .

Appendix E. Pseudo true values of θ̂sarn based upon the RGMMmethod

We investigate the pseudo true value of γ̂n based upon the RGMM
method under the null MESS model. Note that Vn(γ)=(In−λWn)
Yn−Xnβ. The moment vector is

gn γð Þ ¼ P1nVn γð Þ;…; PqnVn γð Þ;Qn

� �
′
Vn γð Þ

where Pjn, j=1, ⋯, q, have zero diagonals. Let angn(γ) represent a linear
combination of gn(γ). γ̂n is obtained from minγg′n(γ)a′nangn(γ).
Hence, the pseudo-true values of γ̂n are defined as

γ�
njex ¼ arg min

γ
Ejexg

′
n γð Þa′nanEjexgn γð Þ:

We assume that γn|ex⁎ is unique:

Assumption E.1. γn|ex⁎ is the unique solution of themoment equations
E|exgn(γ)=0.

With Assumption E.1 and regularity conditions given in previous
sections, we have the following lemma:

Lemma E.1. Under the null MESS model and given Assumptions 2.2–2.4,
3.6, 4.1–4.3 and E.1, γ̂n is a consistent estimator of γn|ex⁎ in the sense that
γ̂n−γ�

njex ¼ op 1ð Þ.

Appendix F. Proof of propositions and lemmas

Proof of Lemma B.1. The proof basically follows the proof of Theo-
rems 3.1 and 4.1 in Lee (2004). By definition, Hn|sar(μ)≤Hn|sar(μn|sar⁎ ).
According to White (1994, Theorem 3.4), we shall show the uniform
convergence of 1

n Ln μð Þ−Hnjsar μð Þ	 

to zero in the parameter space of μ,

check the uniform equicontinuity of Hn|sar(μ) and show the identifica-
tion uniqueness condition.

Denoteσ2
n μ;λ0;σ2

0

	 
 ¼ 1
nσ

2
0tr S−1′

n Sexn μð Þ′Sexn μð ÞS−1
n

� �
. We shall show

σn
2(μ, λ0, σ0

2) is uniformly bounded away from zero in μ. To begin with,
consider the log likelihood function of a pure SAR process Yn=
Sn(λ)−1Vn. That is

Lp;nðλ;σ2Þ ¼ −n
2
ln2πσ2− 1

2σ2 Y
′
nSn λð Þ′Sn λð ÞYn þ ln Sn λð Þj j;
and EjpsarðLp;nðλ0;σ
2
0ÞÞ ¼ −n

2 ln2π þ 1ð Þ−n
2 lnσ

2
0 þ ln Snj j. Similarly, the

log likelihood function of a pure MESS process Yn=Sn
ex(μ)−1Vn is

Lp;nðμ;σex2Þ ¼ −n
2
ln2πσ ex2− 1

2σ ex2 Y
′
nS

ex
n μð Þ′Sexn μð ÞYn:

Denote Hpsar, n (μ)=maxσex2E|psar(Lp,n(μ,σex2)) as the concentrated
likelihood function for the conditional expectation of Lp,n(μ, σex2),
given the true pure SAR process. Hpsar,n(μ) can be written as

Hpsar;n μð Þ ¼ −n
2

ln2π þ 1ð Þ−n
2
lnσ2

nðμ;λ0;σ
2
0Þ:

By the information inequality, Hpsar,n(μ)≤E|psar(Lp,n(λ0, σ0
2)),

which means that for all μ in its parameter space, we have

−1
2
lnσ2

nðμ;λ0;σ
2
0Þ≤−1

2
lnσ2

0 þ
1
n
ln Snj j: ðF:1Þ

Based on Eq. (F.1), we can argue that σn
2(μ, λ0, σ0

2) is uniformly
bounded away from zero. Suppose not, then there would exist a se-
quence μn in its parameter space such that limn→∞σn

2(μn, λ0, σ0
2)=0.

However, in Eq. (F.1), −1
2 lnσ

2
n μn;λ0;σ2

0

	 

→∞ while −1

2 lnσ2
0 þ 1

n ln Snj j
is bounded, a contradiction. As a result, σn

2(μ, λ0, σ0
2) must be uniformly

bounded away from zero.
Next, we show the uniform convergence of 1

n Ln μð Þ−Hn jsar μð Þ	 

to

zero. Note that

1
n

Ln μð Þ−Hnjsar μð Þ
� �

¼ −1
2

lnσex2
n μð Þ− lnσex2

njsar μð Þ
� �

: ðF:2Þ

Recall that under the null SAR model

σ ex2
n μð Þ ¼ 1

n
S−1
n Xnβ0 þ S−1

n Vn

� �
′
Sexn μð Þ′MnS

ex
n μð Þ S−1

n Xnβ0 þ S−1
n Vn

� �
¼ 1

n
Sexn μð ÞS−1

n Xnβ0

� �
′
Mn Sexn μð ÞS−1

n Xnβ0

� �
þ2
n

Sexn μð ÞS−1
n Xnβ0

� �′
MnS

ex
n μð ÞS−1

n Vn

þ1
n
V ′

nS
−1′

n Sexn μð Þ′MnS
ex
n μð ÞS−1

n Vn

and

σex2
njsar μð Þ ¼ 1

n

�
Sexn μð ÞS−1

n Xnβ0

� �′
Mn Sexn μð ÞS−1

n Xnβ0

� �
þσ2

0tr S−1′

n Sexn μð Þ′Sexn μð ÞS−1
n

� ��
:



Table 15
Bootstrap size and power of the J-test statistics under H0: Snex(μ)Yn= lnβ1

ex+X2nβ2
ex+Vn.

n x=χ2(3) x=U(0, 10)

Size Power Size Power

Yn|1 Yn|2 Yn|1 Yn|2 Yn|1 Yn|2 Yn|1 Yn|2

Wsls 100 0.056 0.05 0.099 0.05 0.043 0.034 0.094 0.03
300 0.057 0.045 0.173 0.059 0.047 0.049 0.252 0.069
500 0.039 0.048 0.335 0.059 0.045 0.037 0.432 0.07
700 0.036 0.047 0.497 0.062 0.062 0.044 0.668 0.12

The SAR model: λ0=0.4, β10=2, β20=1, and σ0=1.
The MESS model: μ0=−0.5108, β10

ex =2, β20
ex =1, and σ0

ex=1.

Table 16
Bootstrap size and power of J-test statistics with unknown heteroskedasticity under
H0: Yn=λWnYn+ lnβ1+X2nβ2+Vn.

L, L ̅ x=χ2(3) x=U(0, 10)

Size Power Size Power

Yn|1 Yn|2 Yn|1 Yn|2 Yn|1 Yn|2 Yn|1 Yn|2

Worgmm L=5, L ̅=15 0.041 0.053 0.077 0.227 0.047 0.044 0.086 0.253
L=14,L=̅20 0.051 0.058 0.078 0.297 0.056 0.027 0.082 0.291

The SAR model: λ0=0.4, β10=2, and β20=1.
The MESS model: μ0=−0.5108, β10

ex =2, and β20
ex =1.

Sample size is 545 for L ¼ 5; �L ¼ 15. Sample size is 520 for L ¼ 14; �L ¼ 20.
Worgmm: the Wald test statistics based on the FORGMM method.
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Therefore
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n Xnβ0
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MnS
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þ1
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nS
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n Sexn μð Þ′MnS
ex
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−σ2
0

n
tr S−1′
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n

� �
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−σ2
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n
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n Sexn μð Þ′Sexn μð ÞS−1
n
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−Cn μð Þ

where Cn μð Þ ¼ 1
nV

′
nS

−1′

n Sexn μð Þ′XnðX′
nXnÞ

−1
X′

nS
ex
n μð ÞS−1

n Vn.
By Lemma A.5 and the series expansion form of the matrix expo-

nential, 1
nX

′
nS

ex
n μð ÞS−1

n Vn ¼ op 1ð Þ uniformly in μ. Thus,

Cn μð Þ ¼ 1
n
V ′

nS
−1′

n Sexn μð Þ′Xn

� �
X′
nXn

n

 !−1
1
n
X′
nS

ex
n μð ÞS−1

n Vn

� �
¼ op 1ð Þ

uniformly in μ. Furthermore, by Lemmas A.4 and A.5,

2
n

Sexn μð ÞS−1Xnβ0

� �
′
MnS

ex
n μð ÞS−1

n Vn ¼ op 1ð Þ

uniformly in μ. Also by Lemma A.2,

1
n

V ′
nS

−1′

n Sexn μð Þ′Sexn μð ÞS−1
n Vn−σ2

0tr S−1′

n Sexn μð Þ′Sexn μð ÞS−1
n

� �i
¼ op 1ð Þ

h

uniformly in μ. Therefore, σn
ex2(μ)−σn|sar

ex2 (μ)=op(1) uniformly in μ.

Finally, by the mean-value theorem, lnσ ex2
n μð Þ− lnσex2

njsar μð Þ
��� ��� ¼

σ ex2
n μð Þ−σ ex2

njsar μð Þ
��� ���.σ̃ ex2

n μð Þ, where σ̃ ex2
n μð Þ lies between σn

ex2(μ) and

σn|sar
ex2 (μ). Notice that σn|sar

ex2 (μ)≥σn
2(μ, λ0, σ0) since

σ ex2
njsar μð Þ ¼ 1

n
Sexn μð ÞS−1

n Xnβ0

� �
′
MnS

ex
n μð ÞS−1

n Xnβ0 þ σ2
n μ;λ0;σ

2
0

� �
:

As σn
2(μ, λ0, σ0

2) is uniformly bounded away from zero in μ, σn|sar
ex2 (μ)

will be so too. As a result, σn
ex2(μ) will be uniformly bounded away from

zero in μ in probability. Therefore, |lnσn
ex2(μ)− lnσn|sar

ex2 (μ)|=op(1)
uniformly in μ. Hence supμ

1
n Ln μð Þ−Hnjsar μð Þ	 
�� �� ¼ op 1ð Þ.

Next we show the uniform equicontinuity of 1
n Hnjsar μð Þ. Note that

1
n Hnjsar μð Þ ¼ − 1

2 ln2π þ 1ð Þ− 1
2 lnσ ex2

njsar μð Þ. σn|sar
ex2 (μ) is uniformly

continuous in μ since it is essentially a polynomial of μ. The uniform
continuity of lnσn|sar

ex2 (μ) follows because 1
σex2

njsar μð Þ is uniformly bounded

in μ. Hence 1
n Hnjsar μð Þ is uniformly equicontinuous in μ.
For the identification uniqueness condition, note that

1
n
Hnjsar μð Þ−1

n
Hnjsarðμ�

njsarÞ ¼ −1
2

lnσex2
njsar μð Þ− lnσ ex2

njsarðμ�
njsarÞ

h i
≤ 0:

Then, by Assumption B.1, the identification uniqueness condition is
satisfied.

In conclusion, p limμ̂ njsar ¼ μ�
njsar and thus p limθ̂exnjsar ¼ θex�njsar

follows from the identification uniqueness and uniform convergence
(White, 1994, Theorem 3.4). □

Proof of Lemma C.1. To show that θ̂sarn −θsar�njex ¼ op 1ð Þ, we follow sim-
ilar steps in the proof of Lemma B.1. □

Proof of Lemma D.1. The proof is similar to the proof of Proposition
1 in Lee (2007). Specifically, the parameter space is bounded,

1
n angn ϕð Þ is continuous in ϕ with an ¼ Q ′

nQn
n

� �−1
2
, the identification

uniqueness condition is satisfied by Assumption D.1, and 1
n angn ϕð Þ−

1
n anEjsargn ϕð Þ converges in probability to zero in ϕ uniformly in its pa-
rameter space. □

Proof of Lemma E.1. The proof is similar to the proof of Proposition 1
in Lee (2007) and Lemma D.1. □

Proof of Proposition 1. The proof follows similarly the proof of Prop-
osition 1 in Lee (2007). For consistency, we shall first show that
1
n angnðηr1 Þ− 1

n anEgnðηr1 Þ will converge in probability uniformly in ηr1 to
zero. Following Lee (2007), let an=(an1, …, anq, anx) where anx is a row
subvector so that angn(ηr1)=V′n(ηr1)(Σj=1

q anjPjn)Vn(ηr1)+anxQ′nVn(ηr1).
Note that

Vnðηr1 Þ ¼ dnðηr1 Þ þ Sn λð ÞS−1
n Vn ¼ hn γð Þ þ Ŷ njr1 ðδ0−δr1 Þ þ Sn λð ÞS−1

n Vn

¼ hn γð Þ þ Ŷ njr1 ðδ0−δr1 Þ þ Vn þ λ0−λð ÞGnVn

ðF:3Þ

where hn(γ)=Xn(β0−β)+(λ0−λ)GnXnβ0. By Lemma A.5,

1
n
anxQ

′
nVnðηr1 Þ ¼

1
n
anxQ

′
nhn γð Þ þ 1

n
anxQ

′
nY

�
njr1 ðδ0−δr1 Þ þ op 1ð Þ ðF:4Þ

for r1=1, 2 where Yn|r1⁎ is defined in Section 3. The quadratic moment
function can be decomposed into three terms:

V ′
nðηr1 Þ

Xq
j¼1

anjPjn

0
@

1
AVnðηr1 Þ ¼ d′nðηr1 Þ

Xq
j¼1

anjPjn

0
@

1
Adnðηr1 Þ

þlnðηr1 Þ þ tnðηr1 Þ



δ2ÞÞ

Table 17
Bootstrap size and power of J-test statistics with unknown heteroskedasticity under
H0: Snex(μ)Yn= lnβ1

ex+X2nβ2
ex+Vn.

L, L ̅ x=χ2(3) x=U(0, 10)

Size Power Size Power

Yn|1 Yn|2 Yn|1 Yn|2 Yn|1 Yn|2 Yn|1 Yn|2

Wrsls L=5, L ̅=15 0.053 0.047 0.094 0.074 0.051 0.056 0.084 0.079
L=14, L ̅=20 0.049 0.045 0.096 0.059 0.071 0.048 0.083 0.091

The SAR model: λ0=0.4, β10=2, and β20=1.
The MESS model: μ0=−0.5108, β10

ex =2, and β20
ex =1.

Sample size is 545 for L ¼ 5; �L ¼ 15. Sample size is 520 for L ¼ 14; �L ¼ 20.
Wrsls: the Wald test statistics based on the GN2SLS method.
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where

lnðηr1 Þ ¼ d′nðηr1 Þ
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j¼1
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S
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0
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1
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By Lemma A.2,

1
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ðF:5Þ

For d′nðηr1 Þ ∑q
j¼1anjPjn

� �
dnðηr1 Þ and ln(ηr1), we need to consider

two cases r1=1 and r1=2 separately. For r1=1, by Lemmas A.1
and B.1,

1
n
d′n η1
	 
 Xq

j¼1

anjPjn

0
@

1
Adn η1

	 
 ¼ 1
n
h′n γð Þ
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0
@
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� Y�
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� �
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ðF:6Þ

uniformly in η1. For 1
n ln η1
	 


, by Lemma A.5, it is

1
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n
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� �′ ∑
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 !
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For r1=2, by Lemmas A.1, A.2 and B.1
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under the null SAR model.
With Eqs. (F.5)–(F.8) together, we have
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uniformly in η1 and η2, respectively.
With Eq. (F.9) 1

n angnðηr1 Þ− 1
n anEgnðηr1 Þ converges in probability

uniformly in ηr1 to zero. Since gn(ηr1) is a quadratic function of ηr1
and the parameter space is bounded, 1

n anEgnðηr1 Þ is uniformly
equicontinuous in ηr1. Thus, by a similar argument in Lee (2007),

the identification uniqueness condition for 1
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� �
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� �

�
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nanE gnðηr1 Þ

� �
must be satisfied. The consistency of the GMME η̂n r1j

follows from the uniform convergence and the identification
uniqueness condition (White, 1994).

For the asymptotic distribution of η̂n r1j , by the Taylor expansion,
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By Lemmas A.2 and A.5,
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In conclusion, because �ηnjr1−η0r1 ¼ op 1ð Þ, 1
n
∂gnð�ηnjr1 Þ

∂ηr1
¼ − 1

n Dnjr1þ
op 1ð Þ for r1=1, 2, with Dn|1 and Dn|2 defined in Proposition 1. On
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The asymptotic distribution of
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follows.

Proof of Proposition 2. The proof is basically similar to the proof of
Proposition 2 in Lee (2007). As usual, by the generalized Schwartz in-
equality, that the optimal weighting matrix for an′an in the GMM
estimation of Eq. (3.2) will be 1
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uniformly in ηr1 for r1=1, 2. For the quadratic moments, following the
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1
n
E V ′

nðηr1 ÞPjnVnðηr1 Þ
h i

¼ 1
n
E d′nðηr1 ÞPjndnðηr1 Þ þ lnðηr1 Þ þ tnðηr1 Þ
h i
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First,

1
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2
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n
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S
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� �
þ λ0−λð Þ2 σ

2
0

n
tr G′

nPjnGn

� �
¼ O 1ð Þ

for r1=1, 2. Next we need to check 1
n E d′nðηr1 ÞPjndnðηr1 Þ
h i

and 1
n Eln ðηr1 Þ.

When r1=1, 1n Eln η1
	 
 ¼ limn→∞

1
n hn γð Þ þ Y�

nj1
� �

′
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jn Vn þ λ0−λð ÞGnVnð Þ

i
¼

h
0 and also by Lemma A.1,
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n→∞

1
n
E d

′

n η1
	 


Pjndn η1
	 
h i

¼ E
1
n

hn γð Þ þ Y�
nj1 δ0−δ1ð Þ

� �
′
Pjn hn γð Þ þ Y�

nj1 δ0−δ1ð Þ
� �h i

¼ O 1ð Þ:
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When r1=2, by Lemmas A.1 and A.2,

1
n
Eln η2
	 
 ¼ δ0−δ2ð Þσ

2
0

n
tr S−1′
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njsarP

S
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and

1
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2
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n
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�
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n

� �
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uniformly in ηr1. These together imply that 1
n Egnðηr1 Þ ¼ O 1ð Þ uniformly

in ηr1. Consequently, 1
n

���gnðηr1 Þ
��� ¼ Op 1ð Þ uniformly in ηr1. Thus,��� 1

n g
′
nðηr1 Þ Ω̂−1

n −Ω−1
n

� �
gnðηr1 Þ

��� ¼ Op 1ð Þ, uniformly in ηr1. The consis-

tency of FOGMME follows. For the asymptotic distribution, as
1
n
∂gnðη̂onjr1 Þ

∂ηr1
¼ − Dnjr1

n þ Op 1ð Þ from Proposition 1,

ffiffiffi
n

p
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The asymptotic distribution of
ffiffiffi
n

p
η̂onjr1−η0r1
� �

follows. □

Proof of Proposition 3. Theproof is similar to the proof of Proposition 1
but is simpler as we only use the linear moment function Q′nVn(ψr2).
Therefore, the N2SLS is a special case of GMM estimation with an ¼
Q ′

nQn
n

� �−1
2 and 1

n angnðψr2 Þ ¼ Q ′
nQn
n

� �−1
2 1
nQ

′
nVnðψr2 Þ. □

Proof of Proposition 4. The proof is similar to those proofs of Prop-
osition 1 and Proposition 1 in Lin and Lee (2010). □

Proof of Proposition 5. The proof of the consistency of 1
n Ω̂nh will be

similar to that in Lin and Lee (2010). Here we shall show that
1
n D̂nhjr1−Dnhjr1
� �

¼ op 1ð Þ for r1=1, 2.

Note that two generic forms of the elements in 1
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that, by Lemma A.10,
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which is op(1) as follows. For illustration, we shall check the higher
order terms of v′nis. For example,
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By Cauchy's inequality, E vnivnlj j≤ Ev2ni
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some constant C, uniformly in i, l and n since σni is uniformly bounded,
it follows that
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Therefore, as λ0−λ̂n is op(1), 1
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The term 1
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i¼1 PS
jnGn
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ii
v̂2
ni− 1
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ii
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proved with similar arguments. Following all the above arguments,
1
n D̂nhjr1−Dnhjr1
� �

¼ op 1ð Þ. Together, these prove Proposition 5. □

Proof of Proposition 6. The proof is similar to those proofs of Prop-
osition 2 and Proposition 3 in Lin and Lee (2010). □

Proof of Proposition 7. The proof is similar to those proofs of
Proposition 1 and Proposition 1 in Lin and Lee (2010). The GN2SLS
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is a special case of RGMM estimation with an ¼ Q ′
nΣ̂nQn
n

� �−1
2
and

1
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nΣ̂nQn
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′
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