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In this paper we investigate a spatial Durbin error model with finite distributed lags and consider the Bayes-
ian MCMC estimation of the model with a smoothness prior. We study also the corresponding Bayesian
model selection procedure for the spatial Durbin error model, the spatial autoregressive model and the ma-
trix exponential spatial specification model. We derive expressions of the marginal likelihood of the three
models, which greatly simplify the model selection procedure. Simulation results suggest that the Bayesian
estimates of high order spatial distributed lag coefficients are more precise than the maximum likelihood es-
timates. When the data is generated with a general declining pattern or a unimodal pattern for lag coeffi-
cients, the spatial Durbin error model can better capture the pattern than the SAR and the MESS models in
most cases. We apply the procedure to study the effect of right to work (RTW) laws on manufacturing
employment.
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1. Introduction

Spatial econometric models applied in regional science and geog-
raphy have been receiving more attention in various areas of eco-
nomics. The most popular spatial econometric model is the spatial
autoregressive (SAR) model. The SAR model implies a geometrical
decay pattern of spatial spillover effects or externalities from levels
of neighbors' exogenous characteristics in its reduced form. A geo-
metrical decay pattern of spatial distributed lags is not the only choice
of modeling spatial externalities. There are other models which dis-
play a different pattern of spatial externalities. Recently, LeSage and
Pace (2007) introduce the matrix exponential spatial specification
(MESS) model, which exhibits an exponential declining pattern of
spatial externalities. These two spatial lag patterns do not exhaust
other possible patterns. Furthermore, both the SAR model and the
MESS model incorporate global spatial externalities in the sense that
they relate all the neighbors in the system to each other. If one wants
ees for their helpful comments.
+1 614 292 3906.
7@osu.edu (L. Lee).

rights reserved.
to capture local spatial externalities,1 these two models might not be
appropriate. In practice, if one wants to incorporate local externalities
in the model and there were no formal theoretical guidance on which
pattern of spatial externalities to choose, a possible solution is to pro-
pose a spatial Durbin error model (SDEM)2 with finite distributed lags
of exogenous regressors, which does not impose strong restrictions on
the pattern of spillover effects or externalities. Then we are facing a
non-nested model selection problem among a SDEM model, the SAR
model and the MESS model. Hence, in addition to the estimation of a
SDEMmodel, it is of interest to construct a model discrimination proce-
dure for them.

In this paper we propose a finite lag SDEM model with a smooth-
ness prior in order to accommodate more flexible patterns of local
spatial externalities. We consider the Bayesian MCMC estimation of
the SDEM model and the corresponding Bayesian model selection
1 As mentioned by Anselin (2003), local spatial externalities would be appropriate
when the proper spatial range of the explanatory variables is the location itself and
its immediate neighbors. For more discussion regarding global and local spatial exter-
nalities, see Anselin (2003).

2 We thank two referees for pointing out that the original name “SLX” for the model
is somehow confusing. We have changed the name of the model to SDEM throughout
the paper. Related literature about the SDEM model are mentioned in Section 2.
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procedure for the SDEMmodel, the SARmodel and theMESSmodel.We
focus on Bayesian estimation because a direct maximum likelihood
(ML) estimation for high order lag coefficients of the SDEM model
might be imprecise due to multicollinearity among lagged regressors.3

As motivated by Shiller's smoothness prior for distributed lag model,
we may impose a smoothness prior on the lag coefficients in order to
obtain better estimates.

For model selection among non-nested models, both classical ap-
proach and Bayesian approach are available in the literature. Howev-
er, the classical non-nested tests might be unreliable due to imprecise
estimates for high order lag coefficients of a SDEM model. For Bayes-
ian approach, Zellner (1971) has set forth the basic theory and the
model selection procedure, which involves calculating and comparing
the posterior probabilities of competitive models and is feasible for
competitive non-nested models. With posterior probabilities for com-
petitive models one can see whether those models are close compet-
itors or one model just dominates all others. Hepple (1995a,b)
extends the Bayesian model selection procedure into non-nested spa-
tial models.4 In particular, he has derived expressions of marginal
likelihoods for a number of spatial models including the SAR model
and the spatial error model, which greatly simplify the calculation
of model posterior probabilities. LeSage and Pace (2007) derive an ex-
pression of the marginal likelihood of the MESS model, which could
be used to produce Bayesian model comparison procedure for the
MESS model and other models. LeSage and Parent (2007) also extend
the Bayesian model selection procedure for linear regression models
into the SAR model and the spatial error model. Their focus is on com-
paring models with different matrices of explanatory variables.5 We
can also derive an expression of the marginal likelihood of the SDEM
model, which simplifies the model selection procedure.

The paper is organized as follows: Section 2 introduces the SDEM
model with a smoothness prior and specifies the model selection
problem. Section 3 considers Bayesian MCMC estimation of the
SDEM model. Section 4 discusses Bayesian model selection procedure.
Section 5 summarizes simulation results to investigate sampling prop-
erties of our Bayesian estimation method and model selection proce-
dure. Section 5 includes an empirical study of the effect of right to
work (RTW) on manufacturing employment. Conclusions are drawn
in Section 6. Technical details and tables are given in Appendix A.

2. The models

Consider a spatial autoregressive (SAR) model

Yn ¼ λWnYn þ cln þ Xnβ þ Vn ð2:1Þ

where ln is a n × 1 column vector of ones, and c is the coefficient of the
intercept term. Xn is a n × k dimensional matrix of nonstochastic exog-
enous variables. Wn is a spatial weight matrix with known constants
with a zero diagonal. The error terms in Vn = (vn1,vn2, …,vnn)′ are as-
sumed to be i.i.d normally distributed with mean 0 and variance σ2.
The reduced form of the SAR model reviews its implication in spatial
3 There might be multicollinearity among the lagged exogenous regressors in the
SDEM model. This is similar to the source of multicollinearity in the spatial Durbin
model (Anselin, 1988). See Section 2 for more discussions.

4 Hepple has considered a bunch of non-nested model selection problems for spatial
models. For example, comparing SAR models with different spatial weight matrices or
comparing spatial error models with different spatial weight matrices. For more de-
tails, see Hepple (1995a,b).

5 LeSage and Parent deal with the cases where the number of possible models that
consist of different combinations of candidate explanatory variables is too large. Calcu-
lation of posterior probabilities for all models is difficult. They rely on a Markov Chain
Monte Carlo model composition methodology proposed by Madigan and York (1995).
For more details, see LeSage and Parent (2007).
externalities in terms of a geometric declining pattern of spatial distrib-
uted lags on exogenous regressors,

Yn ¼ In−λWnð Þ−1cln þ Xnβ þ
X∞
q¼1

Wq
nXnλ

qβ þ In−λWnð Þ−1Vn: ð2:2Þ

Here the nonzero elements of rows ofWn with q ≥ 1 represent the
qth order neighbors. Then the specification in Eq. (2.2) has spillover
effects or externalities generated by the regressors xs from one's dif-
ferent level of neighbors being geometrically declining.

As an alternative to the SAR specification, LeSage and Pace (2007) in-
troduce the MESS model with the specification Sn

ex(μ)Yn = cln + Xnβ +
Vn, of which the reduced form is

Yn ¼ Sexn μð Þ−1cln þ Sexn μð Þ−1Xnβ þ Sexn μð Þ−1Vn; ð2:3Þ

where Sexn μð Þ ¼ eμWn ¼ In þ∑∞
q¼1

1
q!

μWnð Þq. Themodel introduces an ex-

ponential decay pattern of spatial externalities via its spatial distributed
lags on regressors.

However, according to Eqs. (2.2) and (2.3), both the SAR model
and the MESS model may be rather “restrictive” because they impose
strong restrictions on the pattern of spatial externalities. Moreover,
Eqs. (2.2) and (2.3) are infinite summations for lagged regressors
WnXns, implying that both models only incorporate global spatial ex-
ternalities because they relate all the neighbors in the system to each
other. To allow for a more flexible pattern of spatial externalities and
incorporate local spatial externalities, a possible specification is the
following finite spatial distributed lag model:

Yn ¼ cln þ Xnβ þWnXnβ1 þW2
nXnβ2 þ…þWm

n Xnβm

þ In−ρWnð Þ−1Vn: ð2:4Þ

Here we combine local externalities for Xn with global externali-
ties for Vn in the model.6 We do not impose strong restrictions on
the lag coefficients β1, …, βm. As a result, the model should be able
to accommodate more flexible patterns of spatial externalities.
LeSage and Pace (2009) label the model in Eq. (2.4) as a spatial
Durbin error model (SDEM). Some literatures have discussed other
versions of the SDEM model, for example, Lacombe et al. (2012)
and LeSage and Christina (2012). However, neither of them includes
higher order spatial distributed lag terms of Xn in the model.7 In em-
pirical research, we usually do not have an economic theory that tells
us which pattern of spatial externalities to choose. We are facing a
non-nested model selection problem among the SDEM model, the
SAR model and the MESS model.

However, one concern about the SDEM model in Eq. (2.4) is that,
when we use the ML method to directly estimate the model, esti-
mates of high order coefficients βs might be poor due to possible
multicollinearity among the lagged regressors Xn, Wn, Xn, …, Wn

mXn.8

In practice, one might expect that those coefficients would change
smoothly, so we borrow the idea of smoothness prior from Shiller
(1973) to impose some random restrictions on the lag coefficients
and use the Bayesian MCMC method to estimate the SDEM model.
For model selection, we follow the procedure advocated in Zellner
(1971) and compare the posterior probabilities for the three models.
6 Here local externalities are incorporated by the lagged exogenous regressors WnXns
while global externalities are captured by (In − ρWn)−1Vn. The model in Eq. (2.4) is also a
generalized versionof Eq. (30) inAnselin (2003),withhigher order laggedexogenous regres-
sorsWnXns. See Anselin (2003) for more discussions.

7 Lacombe et al. (2012) only include the first order spatial distributed lag in their
SDEM model while LeSage and Christina (2012) include two different Wns in the
model.

8 The estimates of the lag coefficients might have a large variance.
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3. The SDEM model with smoothness prior

3.1. The smoothness prior

Shiller (1973) proposes a smoothness prior for the lag coefficients
of the linear distributed lag models:

yt ¼
Xq−1

i¼0

xt−iβi þ vt

where q is a known constant representing the lag length and βis are
the unknown lag coefficients. OLS estimate of the βis might provide
us with an erratic or jagged shape because of multicollinearity
among xts. In many circumstances, it is unreasonable to believe that
a stable relationship should take such a form. Instead we would ex-
pect the estimates of lag coefficients to form a “smooth” or “simple”
curve. Thus Shiller suggests to impose random restrictions on βis.
That is, he assumes a normal prior for differences of βis and considers
a Bayesian approach to estimate the model.

Here we consider a similar smoothness prior for the lag coeffi-
cients in the SDEM model. Let Zn = (ln, Xn, Wn, Xn, …,Wn

mXn) and
γ ¼ ðc;β′;β′

1;…;β′
mÞ′ ¼ c; δð Þ. Also let θ = (ρ,γ′,σ2)′ be the param-

eter vector. The SDEM model can be rewritten as:

Yn ¼ Znγ þ In−ρWnð Þ−1Vn: ð3:1Þ

Let Rn(ρ) = In − ρWn. The Cochrane–Orcutt transformation of the
model is

Rn ρð ÞYn ¼ Rn ρð ÞZnγ þ Vn:

Denote Yn(ρ) = Rn(ρ)Yn and Zn(ρ) = Rn(ρ)Zn. Then the likelihood
function of the model is:

f Ynjθð Þ∝ σ2
� �−n

2 Rn ρð Þj j exp − 1
2σ2 Yn ρð Þ−Zn ρð Þγð Þ′ Yn ρð Þ−Zn ρð Þγð Þ

� �
:

ð3:2Þ

Wewant to define a prior for the lag coefficient vector δ. Following
Shiller (1973), we first introduce the d + 1 difference matrix and de-
fine the d + 1 difference of δ. Let R be a (m − d) × (m + 1)matrix of
d + 1 differences, with rank p = m − d. For instance, if m = 4 and
d = 1, the second difference matrix is:

R ¼
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1

0@ 1A:

With the d + 1 difference matrix, the d + 1 difference of δ is de-
fined as u = Rdδwhere Rd = R ⊗ Ik. For example, withm = 4, k = 1
and d = 1, the second difference u is

u ¼
β−2β1 þ β2
β1−2β2 þ β3
β2−2β3 þ β4

0@ 1A:

Note that u is just a linear transformation of δ. The idea of the
smoothness prior is to assume u to being spherically normally dis-
tributed with mean 0 and variance L2σ2, with L representing one's
prior belief regarding how small the d + 1 difference should be.
Then the d + 1 difference for δ would be relatively smooth due to
the smooth nature of the normal distribution. The prior of δ can be
fully determined by the prior of u. Specifically, if we assume a
uninformative prior for β, …, βd,

π βhð Þ∝ U −Ch;Chð Þ; h ¼ 1;2;…; k
π βij

� �
∝ U −Cij;Cij

� �
; i ¼ 1;2;…;d; j ¼ 1;2;…; k;

where Chs and Cijs are known constants, βh is the hth component of
the k-dimensional parameter vector βh, βij is the jth component of
the k-dimensional parameter vector βi, and U −c; cð Þ is the uniform
density on the interval (−c, c). With (d + 1) × k priors for β, …,
βd and u being (m − d) × k, we can have the one–one mapping
from these priors to the (m + 1) × k dimensional δ. Explicitly, the
prior distribution of δ is

π δjσ2
� �

∝ π ujσ2
� �

∝ 1
L2σ2

� � m−dð Þk
2

exp − u′u
2L2σ2

� �
: ð3:3Þ

Here we assume the prior for δ is conditional on σ2 since this will
greatly simplify our calculation for the posterior probability of the
model. Note that it is a common theme in the literature.9 For exam-
ple, LeSage and Parent (2007) assume the g-prior in Zellner (1986)
for the coefficients of the explanatory variables, conditional on σ2 in
the SAR model and the spatial error model. Without this assumption,
the resulting marginal likelihood will not have a simple form and
some other techniques for calculating the marginal likelihood would
have to be used, e.g. Chib (1995) or Chib and Jeliazkov (2001).

Alternatively, we can consider a more informative smoothness
prior for δ, in which we assume a jointly normal prior for β, …, βd

and u, where u = Rdiδ with Rdi being a (m + 1)k × (m + 1)k
nonsingular matrix. Specifically, Rdi ¼ R̃⊗Ik and R̃ is augmented
with (d + 1) rows of unit row vectors to the d + 1 order difference
matrix. For instance, if m = 4 and d = 1,

Rdi

1 0 0 0 0
0 1 0 0 0
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1

0BBBB@
1CCCCA:

The informative smoothness prior of δ is

π δjσ2
� �

∝ π ujσ2
� �

∝ L2σ2
� �− mþ1ð Þk

2 exp − u′u
2L2σ2

 !
: ð3:4Þ

3.2. Bayesian MCMC estimation of the SDEM model with a smoothness
prior

We illustrate the Bayesian MCMC estimation of the SDEM model
with an informative smoothness prior. The estimation is carried out
using Gibbs sampling where one step Metropolis–Hastings sampling
is involved at each draw. Recall that θ = (ρ, c, δ′, σ2)′. We applied a
set of conjugate prior for σ2, c, the informative smoothness prior for
δ (from the prior of u) and a uniform prior for ρ. So the priors for θ
are:

π ρð Þe U − 1
τn

;
1
τn

� �
π cjσ2
� �eN c;p2σ2

� �
π μjσ2
� �eN O; L2σ2I mþ1ð Þk

� �
π σ2
� �e TG a

2
;
b
2

� �
;

ð3:5Þ
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where N c;p2σ2
� �

is the normal density with mean c and variance

p2σ2
; IG a

2 ;
b
2

� �
is the inverse gamma density with shape parameter a

2 and

scale parameter b
2, and U − 1

τn
; 1
τn

� �
is the uniform density on the interval

− 1
τn
; 1
τn

� �
.10 Here the value of ρ is restricted in the interval − 1

τn
; 1
τn

� �
,

where τn = min{max 1 ≤ i ≤ n∑j = 1
n wij, max1 ≤ j ≤ n∑i = 1

n wij}.11 p, L, a
and b are all prior parameters. Combine the likelihood function with
those priors, the posterior distribution of θ is

π θjYnð Þ∝ σ2
� �− nþ aþ mþ 1ð Þkþ 1

2
þ 1

� �
Rn ρð Þj j

� exp
�
− 1

2σ2

	
Yn ρð Þ−Zn ρð Þγð Þ′ Yn ρð Þ−Zn ρð Þγð Þ þ b

þ c−cð Þ2

p2
þ δ′

R′
d

L
Rd

L
δ

�

:

ð3:6Þ

Recall that γ = (c,δ′)′. Let γ ¼ c;O′
mþ1ð Þk�1

� �′
andM ¼

1
p O
O Rd

L

 !
.

Then we have

c−cð Þ2

p2
þ δ′R′

dRdδ
L2

¼ γ−γð Þ′M′M γ−γð Þ:

So the posterior distribution for θ can be rewritten as

π θjYnð Þ∝ σ 2
� �− nþ aþ mþ 1ð Þkþ 1

2
þ 1

� �
Rn ρð Þj j

� exp
�
− 1

2σ2

	
Yn ρð Þ−Zn ρð Þγð Þ′ Yn ρð Þ−Zn ρð Þγð Þ

þbþ γ−γð Þ′M′M γ−γð Þ

�

:

ð3:7Þ

With conjugate priors, γ and σ2 can be directly sampled by Gibbs
sampling steps since their posterior conditional distributions have
closed forms.12 But we must use the Metropolis–Hastings (M–H)
algorithm for sampling the spatial parameter ρ.13 Note that the full
conditional distribution for ρ is nonstandard due to the presence of
10 Here we use a uniform prior for ρ. Apparently the prior density function has the
value 1

b−a on (a,b), which changes as a and b change. An alternative to the uniform prior
would be a four parameter beta prior B d; d;ρmin ;ρmaxð Þ, introduced by LeSage and Par-

ent (2007), with the density function π ρð Þe 1
Beta d;dð Þ

ρ−ρminð Þd−1 ρmax−ρð Þd−1

ρmax−ρminð Þ2d−1 on the support

(ρmin, ρmax). So researchers can modify the parameter space of ρ by setting different
values of ρmin and ρmax. For example, LeSage and Parent (2007) use this beta prior
and set ρmin = −1 and ρmax = 1.
11 This interval is suggested by Kelejian and Prucha (2010) in which In − ρWn is
nonsingular for all values of ρ. τn can be viewed as a single scaling normalization factor

for Wn. As pointed out by a referee, the interval 1
λmin

; 1
� �

may also be used for ρ, where

λn is the minimum eigenvalue of Wn. Compared with the eigenvalues of Wn, it is rela-
tively easy to compute for a large sample size (Kelejian and Prucha, 2010). Further-
more, theoretically, it has the advantage that if the original matrix is symmetric, the
rescaled weights matrix will remain symmetric. In our Monte Carlo study and empiri-
cal application, τn is equal to 1. So that it is not different from many practice re-
searchers who adopt the more convenient parameter space (−1,1).
12 The Gibbs sampler allows one to obtain draws from some complicated posterior
distribution by sampling sequentially from conditional distributions. Gelfand and
Smith (1990) demonstrate its use in many statistical applications. Casella and George
(1992) provide a simple introduction to the Gibbs sampler. More discussions of the im-
plementation of the Gibbs sampler for spatial models can be found in LeSage and Pace
(2009).
13 The M–H algorithm is first proposed by Metropolis et al. (1953) and generalized by
Hastings (1970). One can rely on the M–H algorithm to sample from some uncondi-
tional or conditional distribution when the distributional form is nonstandard. Chib
and Greenberg (1995) provide a detailed introductory exposition of the algorithm.
Conditions regarding the convergence of Markov chain for the M–H algorithm can be
found in Tierney (1994) and Chib and Greenberg (1996). Implementations of the
M–H algorithm for various spatial models can be found in LeSage and Pace (2009).
Wn. Therefore, a “standard” Gibbs sampling step fails but a Metropolis
step works.14 The whole sampling procedure is:

1. Initial values σ0
2, ρ0

2. Given σt − 1
2 and ρt − 1 from last iteration:

(a) Sample γt|ρt − 1,σt − 1
2

(b) Sample σt
2|ρt − 1,γt

(c) Sample ρt|γt,σt
2

3. Repeat step 2 for a larger number of draws and burn in the first B
draws.15

3.2.1. Sampling γ and σ 2

Denote Ỹ n ρð Þ ¼ Y ′
n ρð Þ; Mγð Þ′

� �
′ and Z̃ n ρð Þ ¼ Z′

n ρð Þ;M′
� �

′. Also

let A1 ρð Þ ¼ Z̃ ′
n ρð Þ Z̃ n ρð Þ and Tγ ρð Þ ¼ A1 ρð Þ−1 Z̃ ′

n ρð Þ Ỹ n ρð Þ. The condi-
tional posterior distribution of γ, given ρ and σ2 is

γ ρ;σ2 eN Tγ ρð Þ;σ2A−1
1 ρð Þ

� �
:

��� ð3:8Þ

The conditional posterior distribution for σ2 given other parameters
is still an inverse gamma distribution,

σ2 ρ;γ e IG ap
2
;
bp
2

� ����� ð3:9Þ

where

ap ¼ nþ aþ mþ 1ð Þkþ 1
bp ¼ bþ γ−γð Þ′M′M γ−γð Þ þ Yn ρð Þ−Zn ρð Þγð Þ′ Yn ρð Þ−Zn ρð Þγð Þ:

3.2.2. Sampling for ρ
The expression for the conditional posterior distribution of ρ is:

π ρ γ;σ2Þ∝ Rn ρð Þj j exp − 1
2σ2 Yn ρð Þ−Zn ρð Þγð Þ′ Yn ρð Þ−Zn ρð Þγð Þ

� �
:

�����
ð3:10Þ

We adopt a Metropolis–Hastings sampling procedure for ρ. We
use a normal distribution along with a tuned random walk procedure
suggested by Holloway et al. (2002) to produce candidate value for ρ.
Denote ρ⁎ as the candidate value of ρ. Also we label the current value
as ρc. The relationship between the candidate value and the present
value is ρ� ¼ ρc þ hρ �N 0;1ð Þ, where hρ is the tuning parameter for
ρ and N 0;1ð Þ is the standard normal distribution. As suggested by
LeSage and Pace (2009), the goal of tuning the proposal from the nor-
mal distribution is to ensure that the M–H sampling procedure moves
over the entire conditional distribution. We also adjust the tuning pa-
rameters during the MCMC sampling process. If the acceptance rate
falls below 0.4, we adjust hρ

' = hρ/1.1. But if the acceptance rate
rises above 0.6, we set hρ' = 1.1 × hρ. The idea is that when the ac-
ceptance rate is too low, we decrease the variance of the normal dis-
tribution to make a new proposal closer to the current value. But if
the acceptance rate is too high, we increase the variance so the new
proposal can range more widely over the domain of the parameters.

However, one concern about this procedure is that one might
sample from the wrong marginal distribution when the “automatic”
step-size adjustment are made during sampling.16 One solution is to
fix the tuning parameter after the burn-in period. We also consider
a modified version of the tuned random walk procedure.17 That is,
we collect values of hρ during burn-in and use the mean of those
14 We thank a referee for suggesting to emphasize on this need.
15 In this paper we burn in the first 20% samples.
16 We thank a referee for pointing out this.
17 This suggestion comes from a referee. We thank for that.
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values as the tuning parameter during “real” sampling. The modified
Bayesian estimation results of the SDEM models are summarized in
Tables 3, 4, 6 and 8.

4. Model comparison

One advantage of Bayesianmethod is that it can provide a formal ap-
proach for model comparison even when the competing models are
non-nested. Our focus is on comparing spatial models with different
patterns of spatial externalities. Let Mi and Mj denote the ith and jth
competing models. Also let Yn represent the data and θi represent the
vector of parameters of Mi. If we specify the prior probabilities P(Mi)
Fig. 1. DGPs for the
and P(Mj) for the two models, as well as the prior density π(θ) for the
parameters, the posterior odds, which is the ratio of the products of
the prior and the marginal likelihood of the two models, is:

P MijYnð Þ
PðMjjYnÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Posterior odds

¼ P Mið Þ
PðMjÞ|fflfflffl{zfflfflffl}
Prior odds

� f i YnjMið Þ
f jðYnjMjÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Bayes odds

where fi(Yn|Mi) = ∫fi(Yn|θi,Mi)π(θi,Mi)dθi.
We usually assume the same prior for all models. Thus, we only

need to pay attention to the Bayes factor, which is just the ratio of
the two model's marginal likelihoods. The model with a larger
SDEM model.
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marginal likelihood has larger posterior probability and hence is more
likely to be the model that generates the data. If we have K models
involved, the posterior probability of model k is:

P MkjYnð Þ ¼ P Mkð Þf k YnjMkð Þ
∑K

j¼1P Mj

� �
f j YnjMj

� �
¼

P Mkð Þ∫ f k Ynjθk;Mkð Þπ θk;Mkð Þdθk
∑K

j¼1P Mj

� �
∫ f j Yn θj;Mj

��� �
π θj;Mj

� �
dθj:

� ð4:1Þ

Assume the same prior probabilities for all Kmodels, the posterior
probability can be rewritten as

P MkjYnð Þ ¼ f k YnjMkð Þ
∑K

j¼1 f j YnjMj

� � : ð4:2Þ

Therefore, to obtain the posterior probability of model k, we only
need to calculate the marginal likelihood for each model and then the
corresponding posterior odds, i.e., fk(Yn|Mj)/fk(Yn|Mk)'s. The following
three subsections discuss the simplified expressions of the marginal
likelihood for the SDEM model with an informative smoothness prior,
and those of the SAR the MESS models.
4.1. Marginal likelihood of the SDEM model with an informative
smoothness prior

Consider themarginal likelihood of the SDEMmodelwith an informa-
tive smoothness prior. Given its priors in Eqs. (3.5) and (3.7), themarginal
likelihood of the SDEMmodel is

f YnjMSDEMð Þ ¼ ∫π γjσ2
� �

π σ2
� �

π ρð Þf Ynjγ;ρ;σ
2

� �
dγdσ2dρ

¼ C0
SDEM∫jRn ρð Þj σ2

� �− nþ mþ1ð Þkþ1þa
2 þ1

� �
� exp − 1

2σ2 Yn ρð Þ−Zn ρð Þγð Þ
0

Yn ρð Þ−Zn ρð Þγð Þ
h i� �

þ γ−γð Þ
0
M2 γ−γð Þ þ bgdγdσ2dp

ð4:3Þ

with C0
SDEM ¼ 2πð Þ−

nþ mþ1ð Þkþ1
2 � L− mþ1ð Þk � Rdj j � p−1 � 2τnð Þ−1 �

b
2

a
2

Γ a
2ð Þ
and

M2 = M′M. Using the properties of the multivariate normal proba-
bility density function (pdf) and the inverse gamma pdf, we analyt-
ically integrate Eq. (4.3) with respect to γ and σ2.18 Let A1(ρ) =

Zn
' (ρ)Zn(ρ) + M2 and γ̃ ρð Þ ¼ A1 ρð Þ−10 Z

0

n ρð ÞZn ρð Þγ̂ ρð Þ þM2γ
� �

with

γ̂ ρð Þ ¼ ðZ
0

n ρð ÞZn ρð ÞÞ−1Z
0

n ρð ÞYn ρð Þ. We can derive the following sim-
plified equation for the marginal likelihood of the SDEM model,
which is just an integration with respect to ρ:

f YnjMSDEMð Þ ¼ CSDEM∫ρ Rn ρð Þj j A1 ρð Þj j−
1
2 Q1 ρð Þ þ Q2 ρð Þ þ Q3 ρð Þ þ b½ �

−nþa
2 dρ

ð4:4Þ
18 See Appendix A for more details.
where

CSDEM ¼ 2πð Þ−
n
2 � L− mþ1ð Þk � Rdj j � p−1 � 2τnð Þ−1 �

b
2

a
2

Γ a
2

� �� 2
nþ a
2

�Γ
nþ a
2

� �
Q1 ρð Þ ¼ Yn ρð Þ−Zn ρð Þγ̂ ρð Þð Þ′ Yn ρð Þ−Zn ρð Þγ̂ ρð Þð Þ;

Q2 ρð Þ ¼ γ̂ ρð ÞZ′
n ρð ÞZn ρð Þγ̂ ρð Þ− γ̃ ′ ρð ÞZ′

n ρð ÞZn ρð Þ γ̃ ρð Þ;

Q3 ρð Þ ¼ γ ′M2γ− γ̃ ′ ρð ÞM2 γ̃ ρð Þ:

ð4:5Þ

Therefore,we can rely on univariate numerical integration to calculate
Eq. (4.4) and themarginal likelihood of the SDEMmodel can be evaluated
by a univariate numerical quadrature.19

4.2. Marginal likelihood of the SAR model

For the case of the SAR model, Yn = λWnYn + cln + Xnβ + Vn, let
X1n = (ln,Xn) and β1 = (c,β′)′. Denote Sn(λ) = In − λWn and
Yn(λ) = Sn(λ)Yn. The SAR model can be rewritten as

Yn λð Þ ¼ X1nβ1 þ Vn: ð4:6Þ

Let θsar ¼ λ;β′
1;σ

2
� �

′ represent the parameter of the SAR model.
The likelihood function is

f Ynjθ
sar� �

¼ 2πð Þ−
n
2 σð Þ−njSn λð Þj exp − Yn λð Þ−X1nβ1ð Þ′ Yn λð Þ−X1nβ1ð Þ

2σ2

( )
:

ð4:7Þ

We assume the following priors for θsar20:

λeU −τn; τnð Þ
β1jσ

2 eN B1;p
2σ2Ikþ1

� �
σ2 e IG a1

2
;
b1
2

� �
:

ð4:8Þ

Therefore, the marginal likelihood of the SAR model is

f YnjMSARð Þ ¼ ∫π β1jσ
2

� �
π σ2
� �

π λð Þf Ynjβ1;λ;σ
2

� �
dβ1dσ

2dλ

¼ C0
sar∫jSn λð Þjσ− nþkþ1þa1þ2ð Þ

� exp
�
− 1

2σ2

	
Yn λð Þ−X1nβ1ð Þ′ Yn λð Þ−X1nβ1ð Þ

þ 1
p2

β1−β1
� �′ β1−β1

� �
þ b1


�
dβ1dσ

2dλ

ð4:9Þ

where C0
sar ¼ 2πð Þ−

nþkþ1
2 � p− kþ1ð Þ � 2τnð Þ−1 �

b1
2

a1
2

Γ a1
2ð Þ. Using the properties

of the multivariate normal pdf and the inverse gamma pdf, we
analytically integrate Eq. (4.9) with respect to β1 and σ2. Let

β̂1 λð Þ ¼ X′
1n X1n

� �−1
X′
1nYn λð Þ, A2 ¼ X′

1n X1n þ Ikþ1=p
2 and β̃1 λð Þ ¼

A−1
2 X′

1n X1nβ̂1 λð Þ þ β1
p2

� �
. The marginal likelihood of the SAR model is

f YnjMSARð Þ ¼ Csar∫λ
jSn λð Þj Q1 λð Þ þ Q2 λð Þ þ Q3 λð Þ þ b1½ �−

nþa1
2 dλ ð4:10Þ
19 The codes are available http://xiaoyihan.weebly.com/research.html.
20 Here we assume a normal prior for β1 rather than the g-prior used in LeSage and
Parent (2007) because the focus of the model selection is comparing different
patterns of spatial externalities. We might want to assume “similar” priors for β1 and
γ = (c,δ′)′. The smoothness prior for δ is actually a normal prior. So we also impose
a normal prior for β1 conditional on σ2.

http://xiaoyihan.weebly.com/research.html


Fig. 2. Trace plots of ρ for SDEM model with 2 lags: DGP1 and DGP3.
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Fig. 3. Trace plots of ρ for SDEM model with 3 lags: DGP1 and DGP3.
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Fig. 4. Trace plots of ρ for SDEM model with 5 lags: DGP1 and DGP3.
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Table 1
Estimation of the SDEM model with 2 lags.

ML Uninformative Informative

L = 1, p = 1 L = 4.07, p = 10 L = 1, p = 1 L = 4.07, p = 10

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

DGP1 ρ 0.3840 0.0609 0.3916 0.0592 0.3886 0.0617 0.3927 0.0557 0.3863 0.0631
c 1.9999 0.0817 1.9877 0.0802 1.9907 0.0753 1.9787 0.0802 1.9948 0.0827
β 2.0177 0.0612 2.0130 0.0586 2.0191 0.0635 2.0070 0.0618 2.0201 0.0593
β1 1.6291 0.1479 1.6100 0.1286 1.6451 0.1497 1.6023 0.1295 1.6522 0.1442
β2 0.9410 0.2572 0.9609 0.2304 0.9087 0.2803 0.9656 0.2449 0.9073 0.2604
σ2 0.9882 0.0652 1.0050 0.0645 0.9988 0.0679 1.0157 0.0635 0.9893 0.0623

DGP2 ρ 0.3893 0.0596 0.3922 0.0605 0.3988 0.0586 0.3956 0.0596 0.3977 0.0614
c 1.9981 0.1213 1.9943 0.1202 2.0024 0.1160 1.9862 0.1211 1.9947 0.1195
β 1.2636 0.0870 1.2637 0.0744 1.2731 0.0868 1.2503 0.0817 1.2553 0.0904
β1 1.0424 0.2102 1.0421 0.1734 1.0496 0.2025 1.0022 0.1810 1.0205 0.1899
β2 0.5682 0.3707 0.5913 0.3488 0.5280 0.3725 0.6165 0.3294 0.5885 0.4053
σ2 1.9857 0.1319 1.9960 0.1323 1.9824 0.1338 1.9909 0.1323 1.9719 0.1220

DGP3 ρ 0.3847 0.0624 0.3891 0.0613 0.3937 0.0633 0.3942 0.0541 0.3921 0.0625
c 1.9994 0.0851 1.9856 0.0835 2.0003 0.0816 1.9850 0.0793 2.0005 0.0852
β 1.6483 0.0644 1.6399 0.0603 1.6515 0.0636 1.6279 0.0548 1.6499 0.0600
β1 2.0081 0.1520 1.9764 0.1334 2.0146 0.1586 1.9256 0.1265 2.0071 0.1529
β2 1.6859 0.2782 1.7470 0.2454 1.6768 0.2705 1.7396 0.2322 1.6779 0.2693
σ2 0.9893 0.0665 1.0043 0.0654 0.9927 0.0688 1.0140 0.0662 0.9937 0.0674

DGP1: (ρ0,c0,σ0
2,β0,β10,β20) = (0.4,2,1,2.0185,1.6526,0.9070);

DGP2: (ρ0,c0,σ0
2,β0,β10,β20) = (0.4,2,2,1.2616,1.0329,0.5669);

DGP3: (ρ0,c0,σ0
2,β0,β10,β20) = (0.4,2,1,1.6526,2.0185,1.6526).
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where

Csar ¼ 2πð Þ−n
2 � 2τnð Þ−1 � p− kþ1ð Þ �

b1
2

a1
2

Γ a1
2

� �� jAj
−1

2
� 2

nþ a1
2

�Γ
nþ a1

2

� �
;

Q1 λð Þ ¼ Yn λð Þ−X1nβ̂1 λð Þ
� �

′
Yn λð Þ−X1nβ̂1 λð Þ
� �

;

Q2 λð Þ ¼ β̂1 λð Þ′X′
1nX1nβ̂1 λð Þ− β̃1 λð Þ′X′

1nX1n β̃1 λð Þ;

Q3 λð Þ ¼ β ′
1
Ikþ1

p2
β1− β̃1 λð Þ′ Ikþ1

p2
β̃1 λð Þ:

ð4:11Þ
Table 2
Estimation of the SDEM model with 3 lags.

ML Uninformative

L = 0.55, p = 1 L

Mean S.D. Mean S.D. M

DGP1 ρ 0.3840 0.0692 0.3928 0.0608 0
c 1.9934 0.0756 1.9796 0.0741 2
β 1.3138 0.0659 1.3110 0.0583 1
β1 1.2792 0.2451 1.2521 0.1441 1
β2 1.1655 0.4143 1.1374 0.1056 1
β3 0.9246 0.6819 1.0017 0.2738 0
σ2 0.9892 0.0645 1.0063 0.0655 0

DGP2 ρ 0.3837 0.0580 0.3903 0.0580 0
c 1.9881 0.1167 1.9802 0.1116 1
β 1.0452 0.0830 1.0513 0.0828 1
β1 0.9914 0.3376 1.0335 0.2022 1
β2 0.9434 0.5821 0.9275 0.1652 0
β3 0.7869 0.9495 0.7781 0.3850 0
σ2 1.9827 0.1297 1.9841 0.1371 1

DGP3 ρ 0.3851 0.0601 0.3923 0.0591 0
c 1.9948 0.0811 1.9824 0.0800 1
β 1.2574 0.0631 1.2567 0.0558 1
β1 1.3468 0.2310 1.3094 0.1396 1
β2 1.2855 0.4103 1.2409 0.1117 1
β3 1.0232 0.6476 1.1287 0.2600 1
σ2 0.9934 0.0630 1.0094 0.0635 0

DGP1: (ρ0,c0,σ0
2,β0,β10,β20,β30) = (0.4,2,1,1.3180,1.3035,1.1535,0.9135);

DGP2: (ρ0,c0,σ0
2,β0,β10,β20,β30) = (0.4,2,2,1.0544,1.0428,0.9228,0.7308);

DGP3: (ρ0,c0,σ0
2,β0,β10,β20,β30) = (0.4,2,1,1.2579,1.3298,1.2579,1.0648).
This marginal likelihood of the SARmodel can also be evaluated by
a univariate numerical integration.

4.3. Marginal likelihood of the MESS model

The MESS model can be written as Yn(μ) = X1nβ1 + Vn with
Yn(μ) = Sn

ex(μ) Yn, X1n = (ln, Xn) and β1 = (c,β′)′. Let θex ¼
μ;β′

1;σ2
� �

′. The likelihood function for the MESS model is

f Ynjθ
ex� �

¼ 2πð Þ−
n
2σ−n exp − Yn μð Þ−X1nβ1ð Þ′ Yn μð Þ−X1nβ1ð Þ

2σ2

( )
: ð4:12Þ
Informative

= 1, p = 10 L = 0.55, p = 1 L = 1, p = 10

ean S.D. Mean S.D. Mean S.D.

.3896 0.0624 0.3893 0.0610 0.3914 0.0636

.0027 0.0832 1.9881 0.0790 2.0032 0.0793

.3158 0.0554 1.2879 0.0538 1.3072 0.0580

.2796 0.1928 1.1407 0.1259 1.2295 0.1769

.1334 0.1741 1.1297 0.1085 1.1232 0.1987

.9658 0.3933 1.1874 0.2414 1.0487 0.3545

.9951 0.0684 1.0157 0.0617 0.9974 0.0637

.3951 0.0591 0.3914 0.0575 0.3919 0.0542

.9922 0.1066 1.9748 0.1151 1.9961 0.1074

.0665 0.0836 1.0250 0.0719 1.0426 0.0793

.0350 0.2631 0.8790 0.1813 0.9702 0.2333

.8952 0.2502 0.9041 0.1464 0.8884 0.2461

.7132 0.5243 0.9836 0.3583 0.8905 0.4943

.9788 0.1356 2.0032 0.1297 1.9843 0.1405

.3906 0.0573 0.3943 0.0611 0.3981 0.0610

.9976 0.0786 1.9912 0.0799 1.9991 0.0834

.2550 0.0587 1.2281 0.0558 1.2443 0.0577

.2989 0.1925 1.1585 0.1315 1.2416 0.1820

.2397 0.1701 1.2226 0.0973 1.2344 0.1806

.1458 0.3721 1.3441 0.2375 1.2060 0.3785

.9950 0.0652 1.0202 0.0650 0.9959 0.0672



Table 3
Estimation of the SDEM model with 2 lags: fix step size.

ML Uninformative Informative

L = 1, p = 1 L = 4.07, p = 10 L = 1, p = 1 L = 4.07, p = 10

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

DGP1 ρ 0.3840 0.0609 0.3947 0.0605 0.3946 0.0625 0.3882 0.0580 0.3902 0.0632
c 1.9999 0.0817 1.9800 0.0811 1.9971 0.0809 1.9874 0.0802 2.0018 0.0781
β 2.0177 0.0612 2.0169 0.0600 2.0188 0.0643 2.0078 0.0600 2.0178 0.0650
β1 1.6291 0.1479 1.6419 0.1331 1.6531 0.1441 1.6000 0.1312 1.6455 0.1485
β2 0.9410 0.2572 0.9282 0.2391 0.9066 0.2478 0.9691 0.2642 0.9033 0.2685
σ2 0.9882 0.0652 0.9973 0.0683 0.9901 0.0688 1.0097 0.0675 0.9887 0.0662

DGP2 ρ 0.3893 0.0596 0.3920 0.0631 0.3951 0.0638 0.3911 0.0628 0.3953 0.0621
c 1.9981 0.1213 1.9817 0.1169 1.9974 0.1080 1.9855 0.1175 2.0042 0.1168
β 1.2636 0.0870 1.2701 0.0831 1.2689 0.0828 1.2544 0.0815 1.2620 0.0865
β1 1.0424 0.2102 1.0443 0.1898 1.0452 0.1923 1.0097 0.1723 1.0362 0.2079
β2 0.5682 0.3707 0.5947 0.3318 0.5549 0.3660 0.6012 0.3404 0.5836 0.3844
σ2 1.9857 0.1319 1.9855 0.1280 1.9794 0.1273 1.9874 0.1259 1.9769 0.1290

DGP3 ρ 0.3847 0.0624 0.3975 0.0648 0.3863 0.0604 0.3876 0.0596 0.3924 0.0597
c 1.9994 0.0851 1.9876 0.0727 1.9928 0.0808 1.9836 0.0749 1.9915 0.0801
β 1.6483 0.0644 1.6426 0.0592 1.6525 0.0624 1.6327 0.0620 1.6576 0.0693
β1 2.0081 0.1520 1.9842 0.1203 2.0042 0.1521 1.9398 0.1339 2.0184 0.1490
β2 1.6859 0.2782 1.7275 0.2359 1.6649 0.2559 1.7611 0.2438 1.6318 0.2997
σ2 0.9893 0.0665 1.0006 0.0607 0.9946 0.0692 1.0067 0.0647 0.9811 0.0649

DGP1: (ρ0,c0,σ0
2,β0,β10,β20) = (0.4,2,1,2.0185,1.6526,0.9070);

DGP2: (ρ0,c0,σ0
2,β0,β10,β20) = (0.4,2,2,1.2616,1.0329,0.5669);

DGP3: (ρ0,c0,σ0
2,β0,β10,β20) = (0.4,2,1,1.6526,2.0185,1.6526).
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We impose the following priors for θex:

μ eN μ ; ξ2
� �

β1jσ
2 eN β1;p

2σ2Ikþ1

� �

σ2 e IG a2
2
;
b2
2

� �
:

ð4:13Þ
Table 4
Estimation of the SDEM model with 3 lags: fix step size.

ML Uninformative

L = 0.55, p = 1 L

Mean S.D. Mean S.D. M

DGP1 ρ 0.3840 0.0692 0.3905 0.0622 0
c 1.9934 0.0756 1.9826 0.0796 1
β 1.3138 0.0659 1.3172 0.0566 1
β1 1.2792 0.2451 1.2683 0.1338 1
β2 1.1655 0.4143 1.1381 0.1039 1
β3 0.9246 0.6819 0.9802 0.2686 0
σ2 0.9892 0.0645 1.0014 0.0686 0

DGP2 ρ 0.3837 0.0580 0.3944 0.0618 0
c 1.9881 0.1167 1.9746 0.1091 2
β 1.0452 0.0830 1.0498 0.0704 1
β1 0.9914 0.3376 0.9961 0.1951 1
β2 0.9434 0.5821 0.9118 0.1493 0
β3 0.7869 0.9495 0.8209 0.3695 0
σ2 1.9827 0.1297 1.9908 0.1270 1

DGP3 ρ 0.3851 0.0601 0.3937 0.0634 0
c 1.9948 0.0811 1.9843 0.0804 2
β 1.2574 0.0631 1.2596 0.0542 1
β1 1.3468 0.2310 1.3082 0.1421 1
β2 1.2855 0.4103 1.2368 0.1078 1
β3 1.0232 0.6476 1.1201 0.2437 1
σ2 0.9934 0.0630 1.0084 0.0673 0

DGP1: (ρ0,c0,σ0
2,β0,β10,β20,β30) = (0.4,2,1,1.3180,1.3035,1.1535,0.9135);

DGP2: (ρ0,c0,σ0
2,β0,β10,β20,β30) = (0.4,2,2,1.0544,1.0428,0.9228,0.7308);

DGP3: (ρ0,c0,σ0
2,β0,β10,β20,β30) = (0.4,2,1,1.2579,1.3298,1.2579,1.0648).
Hence, the marginal likelihood of the MESS model is

f YnjMMESSð Þ ¼ ∫π β1jσ
2

� �
π σ2
� �

π μð Þf Ynjβ1; μ;σ
2

� �
dβ1dσ

2dμ

¼ C0
mess∫ σð Þ− nþkþ1þa2þ2ð Þ exp − μ−μð Þ2

2ξ2

 !
� exp

�
− 1

2σ2

	
Yn μð Þ−X1nβ1ð Þ′ Yn μð Þ−X1nβ1ð Þ

þ 1
p2

β1−β1
� �′ β1−β1

� ��

dβ1dσ

2dμ

ð4:14Þ
Informative

= 1, p = 10 L = 0.55, p = 1 L = 1, p = 10

ean S.D. Mean S.D. Mean S.D.

.3950 0.0600 0.3889 0.0627 0.3926 0.0636

.9996 0.0812 1.9839 0.0721 2.0016 0.0787

.3193 0.0566 1.2912 0.0535 1.3097 0.0548

.2990 0.1834 1.1460 0.1330 1.2295 0.1717

.1258 0.1737 1.1178 0.1037 1.1174 0.1812

.9229 0.3453 1.1680 0.2622 1.0587 0.3491

.9947 0.0701 1.0269 0.0634 0.9955 0.0602

.3945 0.0660 0.3980 0.0612 0.3945 0.0592

.0132 0.1189 1.9719 0.1140 1.9905 0.1150

.0525 0.0794 1.0300 0.0766 1.0530 0.0809

.0469 0.2692 0.9027 0.1940 1.0088 0.2462

.9314 0.2440 0.9034 0.1579 0.9008 0.2339

.7548 0.5106 0.9368 0.3645 0.8230 0.5124

.9749 0.1296 1.9860 0.1331 1.9667 0.1269

.3927 0.0615 0.3894 0.0591 0.3907 0.0680

.0004 0.0798 1.9864 0.0796 1.9971 0.0815

.2577 0.0566 1.2228 0.0503 1.2452 0.0544

.3022 0.1825 1.1557 0.1274 1.2467 0.1786

.2202 0.1816 1.2153 0.0995 1.2295 0.1827

.1409 0.3651 1.3475 0.2345 1.2218 0.3703

.9967 0.0682 1.0220 0.0666 1.0019 0.0687



Table 5
Estimation of the SDEM model with 5 lags.

ML Uninformative Informative

L = 0.5, p = 1 L = 1, p = 10 L = 0.5, p = 1 L = 1, p = 10

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

DGP1 ρ 0.3834 0.0624 0.3924 0.0627 0.3903 0.0608 0.3887 0.0584 0.3894 0.0581
c 1.9971 0.0793 1.9845 0.0787 1.9990 0.0855 1.9806 0.0762 2.0006 0.0779
β 1.5068 0.0733 1.5098 0.0512 1.5082 0.0602 1.4733 0.0505 1.4991 0.0583
β1 1.4435 0.3179 1.4428 0.1388 1.4443 0.1714 1.2892 0.1318 1.4167 0.1554
β2 1.2876 1.1222 1.2743 0.1769 1.2752 0.2974 1.2097 0.1707 1.2719 0.2919
β3 1.0996 1.7266 1.0423 0.1089 1.0464 0.2275 1.1002 0.1106 1.0839 0.2171
β4 0.7239 4.0335 0.7641 0.1473 0.7646 0.1648 0.8838 0.1389 0.7911 0.1685
β5 0.4161 3.9624 0.4563 0.0480 0.4679 0.0309 0.6170 0.0259 0.4411 0.0335
σ2 0.9814 0.0633 1.0054 0.0653 0.9928 0.0612 1.0393 0.0672 1.0029 0.0671

DGP2 ρ 0.3837 0.0639 0.3937 0.0633 0.3941 0.0639 0.3930 0.0604 0.3901 0.0568
c 2.0086 0.1200 1.9941 0.1183 1.9972 0.1183 1.9901 0.1095 2.0066 0.1165
β 1.2480 0.0992 1.2519 0.0736 1.2531 0.0784 1.2247 0.0730 1.2433 0.0797
β1 1.2055 0.4553 1.2048 0.2020 1.1968 0.2422 1.0630 0.1898 1.1625 0.2181
β2 1.1609 1.3744 1.0763 0.2437 1.0871 0.3853 0.9908 0.2507 1.0740 0.3890
β3 0.9579 2.3516 0.8809 0.1509 0.8999 0.3142 0.9090 0.1589 0.9330 0.3018
β4 0.3819 5.1613 0.6384 0.2070 0.6388 0.2330 0.7452 0.1950 0.6643 0.2304
β5 0.4585 5.1290 0.3932 0.0543 0.3635 0.0813 0.5472 0.0319 0.3318 0.0645
σ2 1.9735 0.1330 1.9944 0.1329 1.9758 0.1252 2.0024 0.1279 1.9708 0.1287

DGP3 ρ 0.3825 0.0623 0.3915 0.0633 0.3913 0.0586 0.3911 0.0594 0.3964 0.0589
c 2.0030 0.0858 1.9915 0.0799 1.9987 0.0883 1.9843 0.0823 2.0097 0.0825
β 1.4392 0.0737 1.4397 0.0553 1.4380 0.0576 1.4012 0.0497 1.4214 0.0587
β1 1.5064 0.3240 1.4884 0.1403 1.5098 0.1595 1.3408 0.1284 1.4450 0.1683
β2 1.4572 1.0590 1.4030 0.1665 1.4512 0.2521 1.3544 0.1718 1.4474 0.2734
β3 1.2732 1.7736 1.2261 0.1032 1.2590 0.2160 1.2948 0.1132 1.3223 0.2326
β4 0.8565 3.9158 0.9836 0.1495 0.9731 0.1571 1.1003 0.1495 1.0179 0.1668
β5 0.7145 3.9557 0.6686 0.0804 0.6265 0.0605 0.8733 0.0208 0.6513 0.0349
σ2 0.9841 0.0638 1.0051 0.0626 0.9942 0.0669 1.0330 0.0674 0.9961 0.0653

DGP1: (ρ0,c0,σ0
2,β0,β10,β20,β30,β40,β50) = (0.4,2,1,1.5109,1.4662,1.2875,1.0229,0.7354,0.4784);

DGP2: (ρ0,c0,σ0
2,β0,β10,β20,β30,β40,β50) = (0.4,2,2,1.2590,1.2218,1.0729,0.8524,0.6128,0.3987);

DGP3: (ρ0,c0,σ0
2,β0,β10,β20,β30,β40,β50) = (0.4,2,1,1.4400,1.5139,1.4400,1.2395,0.9653,0.6802).

Table 6
Estimation of the SDEM model with 5 lags: fix step size.

ML Uninformative Informative

L = 0.5, p = 1 L = 1, p = 10 L = 0.5, p = 1 L = 1, p = 10

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

DGP1 ρ 0.3834 0.0624 0.3903 0.0586 0.3913 0.0613 0.3930 0.0567 0.3911 0.0603
c 1.9971 0.0793 1.9872 0.0799 2.0000 0.0829 1.9863 0.0831 1.9939 0.0856
β 1.5068 0.0733 1.5039 0.0550 1.5036 0.0559 1.4732 0.0514 1.4963 0.0541
β1 1.4435 0.3179 1.4450 0.1406 1.4587 0.1745 1.2839 0.1234 1.4060 0.1488
β2 1.2876 1.1222 1.2878 0.1784 1.3219 0.2776 1.1959 0.1661 1.2864 0.2689
β3 1.0996 1.7266 1.0494 0.1095 1.0532 0.2134 1.0852 0.1072 1.1053 0.2072
β4 0.7239 4.0335 0.7573 0.1457 0.7361 0.1624 0.8772 0.1311 0.7900 0.1589
β5 0.4161 3.9624 0.4682 0.0394 0.4078 0.0514 0.6593 0.0341 0.4235 0.0326
σ2 0.9814 0.0633 0.9994 0.0646 0.9888 0.0644 1.0318 0.0643 0.9934 0.0638

DGP2 ρ 0.3837 0.0639 0.3924 0.0601 0.3901 0.0596 0.3912 0.0637 0.4031 0.0566
c 2.0086 0.1200 1.9874 0.1159 2.0015 0.1248 1.9885 0.1137 1.9988 0.1161
β 1.2480 0.0992 1.2486 0.0780 1.2479 0.0875 1.2243 0.0740 1.2432 0.0782
β1 1.2055 0.4553 1.1963 0.1919 1.1902 0.2166 1.0779 0.1758 1.1930 0.2103
β2 1.1609 1.3744 1.0669 0.2223 1.0869 0.3499 1.0163 0.2318 1.1405 0.3794
β3 0.9579 2.3516 0.8758 0.1455 0.8919 0.3059 0.9143 0.1420 0.9604 0.2911
β4 0.3819 5.1613 0.6423 0.2083 0.6573 0.2294 0.7172 0.2024 0.6181 0.2179
β5 0.4585 5.1290 0.3887 0.0304 0.4372 0.0558 0.4490 0.0424 0.2562 0.0557
σ2 1.9735 0.1330 1.9885 0.1367 1.9663 0.1298 2.0050 0.1288 1.9754 0.1275

DGP3 ρ 0.3825 0.0623 0.3906 0.0613 0.3995 0.0531 0.3837 0.0599 0.3912 0.0624
c 2.0030 0.0858 1.9820 0.0816 1.9973 0.0837 1.9856 0.0788 2.0061 0.0754
β 1.4392 0.0737 1.4385 0.0550 1.4397 0.0580 1.4062 0.0532 1.4282 0.0568
β1 1.5064 0.3240 1.4890 0.1410 1.4961 0.1669 1.3336 0.1302 1.4376 0.1491
β2 1.4572 1.0590 1.4072 0.1672 1.4035 0.2714 1.3375 0.1708 1.4045 0.2939
β3 1.2732 1.7736 1.2320 0.1092 1.2239 0.2181 1.2838 0.1075 1.3056 0.2215
β4 0.8565 3.9158 0.9944 0.1491 0.9899 0.1619 1.1098 0.1412 1.0269 0.1729
β5 0.7145 3.9557 0.7481 0.0428 0.7630 0.0716 0.8773 0.0308 0.6610 0.0776
σ2 0.9841 0.0638 1.0037 0.0647 0.9947 0.0646 1.0331 0.0636 0.9944 0.0603

DGP1: (ρ0,c0,σ0
2,β0,β10,β20,β30,β40,β50) = (0.4,2,1,1.5109,1.4662,1.2875,1.0229,0.7354,0.4784);

DGP2: (ρ0,c0,σ0
2,β0,β10,β20,β30,β40,β50) = (0.4,2,2,1.2590,1.2218,1.0729,0.8524,0.6128,0.3987);

DGP3: (ρ0,c0,σ0
2,β0,β10,β20,β30,β40,β50) = (0.4,2,1,1.4400,1.5139,1.4400,1.2395,0.9653,0.6802).
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Table 7
Misspecified estimation of the SDEM model with 3 lags.

Uninformative Informative

L = 1,
p = 1

L = 4.07,
p = 10

L = 1,
p = 1

L = 4.07,
p = 10

Mean S.D. Mean S.D. Mean S.D. Mean S.D.

DGP1 ρ 0.3934 0.0591 0.3943 0.0626 0.3953 0.0588 0.4020 0.0602
c 1.9864 0.0834 2.0070 0.0790 1.9880 0.0825 1.9970 0.0838
β 1.3192 0.0580 1.3189 0.0656 1.3098 0.0589 1.3229 0.0643
β1 1.5452 0.1309 1.5481 0.1608 1.5152 0.1323 1.5522 0.1536
β2 1.5974 0.2414 1.6120 0.2752 1.6564 0.2359 1.5852 0.2768
β3 NA NA NA NA NA NA NA NA
σ2 1.0060 0.0632 0.9979 0.0977 1.0050 0.0669 0.9950 0.0958

DGP2 ρ 0.3920 0.0626 0.3904 0.0626 0.4004 0.0604 0.3901 0.0629
c 1.9844 0.1138 1.9962 0.1222 1.9835 0.1144 2.0101 0.1129
β 1.0559 0.0808 1.0617 0.0893 1.0445 0.0784 1.0465 0.0850
β1 1.2264 0.1901 1.2564 0.2098 1.2114 0.1812 1.2316 0.2017
β2 1.2753 0.3370 1.2674 0.3782 1.2873 0.3260 1.2705 0.3890
β3 NA NA NA NA NA NA NA NA
σ2 1.9738 0.1300 1.9874 0.1313 1.9907 0.1297 1.9842 0.1281

DGP3 ρ 0.3946 0.0618 0.3952 0.0582 0.3924 0.0600 0.4013 0.0613
c 1.9846 0.0810 1.9962 0.0806 1.9874 0.0844 2.0004 0.0841
β 1.2558 0.0609 1.2623 0.0616 1.2435 0.0626 1.2565 0.0632
β1 1.6167 0.1340 1.6127 0.1627 1.5679 0.1286 1.6165 0.1582
β2 1.8023 0.2502 1.7566 0.2982 1.8279 0.2485 1.7832 0.2864
β3 NA NA NA NA NA NA NA NA
σ2 1.0101 0.0739 0.9986 0.0651 1.0135 0.0617 0.9985 0.0687

DGP1: (ρ0,c0,σ0
2,β0,β10,β20,β30) = (0.4,2,1,1.3180,1.3035,1.1535,0.9135);

DGP2: (ρ0,c0,σ0
2,β0,β10,β20,β30) = (0.4,2,2,1.0544,1.0428,0.9228,0.7308);

DGP3: (ρ0,c0,σ0
2,β0,β10,β20,β30) = (0.4,2,1,1.2579,1.3298,1.2579,1.0648).
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with C0
mess ¼ 2πð Þ−

nþkþ1
2 � 2πξ2

� �−1
2 � p− kþ1ð Þ �

b2
2

a2
2

Γ
a2
2ð Þ. Using the proper-

ties of themultivariate normal pdf and the inverse gammapdf,we analyt-

ically integrate Eq. (4.14) with respect to β1 and σ2. Let β̂1 μð Þ ¼
Table 8
Misspecified estimation of the SDEM model with 3 lags: fix step size.

Uninformative Informative

L = 1,
p = 1

L = 4.07,
p = 10

L = 1,
p = 1

L = 4.07,
p = 10

Mean S.D. Mean S.D. Mean S.D. Mean S.D.

DGP1 ρ 0.3926 0.0610 0.3940 0.0607 0.3913 0.0572 0.3968 0.0632
c 1.9849 0.0781 1.9900 0.0813 1.9837 0.0801 2.0001 0.0771
β 1.3204 0.0591 1.3200 0.0653 1.2887 0.0506 1.325 0.0601
β1 1.5463 0.1301 1.5518 0.1439 1.435 0.1057 1.5497 0.1354
β2 1.6092 0.2505 1.5847 0.2665 1.6973 0.2010 1.5776 0.2627
β3 NA NA NA NA NA NA NA NA
σ2 1.0061 0.0656 1.0023 0.0654 1.0321 0.0675 0.9935 0.0658

DGP2 ρ 0.3900 0.0639 0.3920 0.0627 0.3923 0.0591 0.3952 0.0607
c 1.9954 0.1135 1.9961 0.1196 1.9906 0.1175 1.9972 0.1264
β 1.0507 0.0793 1.0536 0.0856 1.0437 0.0818 1.0571 0.0858
β1 1.2234 0.1794 1.2431 0.1984 1.2121 0.1913 1.2439 0.2184
β2 1.3171 0.3368 1.3033 0.3820 1.3467 0.3481 1.2488 0.3854
β3 NA NA NA NA NA NA NA NA
σ2 1.9914 0.1374 1.9793 0.1314 1.9954 0.1213 1.9673 0.1253

DGP3 ρ 0.3969 0.0588 0.4084 0.0571 0.3923 0.0612 0.4017 0.0620
c 1.9871 0.0826 2.0000 0.0801 1.9836 0.0803 1.9986 0.0837
β 1.2651 0.0596 1.2574 0.0642 1.2492 0.0582 1.2659 0.0624
β1 1.6126 0.1319 1.6072 0.1375 1.5746 0.1357 1.6133 0.1523
β2 1.7655 0.2462 1.7818 0.2798 1.8147 0.2428 1.7518 0.2668
β3 NA NA NA NA NA NA NA NA
σ2 1.0022 0.0677 0.9972 0.0664 1.0126 0.0660 0.9918 0.0631

DGP1: (ρ0,c0,σ0
2,β0,β10,β20,β30) = (0.4,2,1,1.3180,1.3035,1.1535,0.9135);

DGP2: (ρ0,c0,σ0
2,β0,β10,β20,β30) = (0.4,2,2,1.0544,1.0428,0.9228,0.7308);

DGP3: (ρ0,c0,σ0
2,β0,β10,β20,β30) = (0.4,2,1,1.2579,1.3298,1.2579,1.0648).
X′
1n X1n

� �−1
X′
1nYn μð Þ, A2 ¼ X′

1n X1n þ Ikþ1 � p−2
2 and β̃1 μð Þ ¼ A−1

2

X′
1n X1nβ̂1 μð Þ þ β1

p2

� �
. The marginal likelihood for the MESS model is

f YnjMMESSð Þ ¼ Cmess∫μ exp − μ−μð Þ2

2ξ2

 !
Q1 μð Þ þ Q2 μð Þ þ Q3 μð Þ þ b2½ �−

nþa2
2 dμ

ð4:15Þ

where

Cmess ¼ 2πð Þ−
n
2 � 2πξ2

� �−1
2 � p− kþ1ð Þ �

b2
2

a2
2

Γ a2
2

� �� jA2j
−1

2 � 2
nþ a2

2

�Γ
nþ a2

2

� �
;

Q1 μð Þ ¼ Yn μð Þ−X1nβ̂1 μð Þ
� �′

Yn μð Þ−X1nβ̂1 μð Þ
� �

;

Q2 μð Þ ¼ β̂1 μð Þ′X′
1n X1nβ̂1 μð Þ− β̃1 μð Þ′X′

1n X1n β̃1 μð Þ;

Q3 μð Þ ¼ β ′
1
Ikþ1

p2
β1− β̃1 μð Þ′ Ikþ1

p2
β̃1 μð Þ:

ð4:16Þ

Following LeSage and Pace (2007), we evaluate the marginal like-
lihood in Eq. (4.15) for μ over a range of support [μmin, μmax], where μ
has most of its prior support.21

5. Simulation study

5.1. Monte Carlo simulation setup

In this section, we apply the Bayesian estimation algorithm and
model selection procedure outlined above to simulated data sets.
The study consists of two parts. In the first part, we focus on the per-
formance of the Bayesian estimation of the finite lag SDEM model
with smoothness priors. We would like to know how the smoothness
prior would affect estimation. In the second part, we utilize the model
selection procedure on three data generating processes (DGP): the
SDEM model, the SAR model and the MESS model. We want to see
whether the model selection procedure could select the right pattern
of spatial externalities by assigning the true model with the highest
posterior probability. In the experiment, the finite lag SDEM models
we consider are the following three cases:

2 lags : Yn ¼ cln þ Xnβ þWnXnβ1 þW2
nXnβ2 þ In−ρWnð Þ−1Vn;

3 lags : Yn ¼ cln þ Xnβ þWnXnβ1 þW2
nXnβ2 þW3

nXnβ3 þ In−ρWnð Þ−1Vn

5 lags : Yn ¼ cln þ Xnβ þWnXnβ1 þW2
nXnβ2 þW3

nXnβ3 þW4
nXnβ4

þW5
nXnβ5 þ In−ρWnð Þ−1Vn:

For estimation, we set the number of experiment repetitions to be
300.22 For each repetition, the total sample size is 450. We consider 3
21 As suggested by LeSage and Pace (2007), with a row-normalized spatial weight
matrixWn, μmax and μmin could be determined by the correspondence λ = 1 − exp(μ).
In our experiment, we set λmax = 0.9999 and λmin = −0.9999. Then we have
μmin = −9.2103 and μmax = 0.6931.
22 LeSage and Pace (2007) and LeSage and Parent (2007) do not include Monte Carlo
studies. They only apply their Bayesian estimation method or model selection proce-
dure on some empirical data sets. Other Bayesian econometrics paper, e.g., George et
al. (2008), does include some Monte Carlo studies with the number of experiment rep-
etitions being 100.



Table 9
Model frequencies for the SDEM model with 2 lags, the SAR model and the MESS model: small sample.

DGP Model/prior L = 1 L = 4.07

p = 1, ξ = 1 p ¼
ffiffiffiffiffiffi
10

p
; ξ ¼

ffiffiffi
3

p
p = 1, ξ = 1 p ¼

ffiffiffiffiffiffi
10

p
; ξ ¼

ffiffiffi
3

p

Low Mod High Low Mod High Low Mod High Low Mod High

SDEM1 SDEM with 2 lags 0.57 0.16 0.41 0.75 0.32 0.59 0.46 0.1 0.31 0.63 0.72 0.75
SAR 0.21 0.41 0.48 0.16 0.39 0.33 0.26 0.45 0.57 0.25 0.16 0.18
MESS 0.22 0.43 0.11 0.09 0.29 0.08 0.28 0.45 0.12 0.12 0.12 0.07

SDEM2 SDEM with 2 lags 0.62 0.21 0.49 0.84 0.05 0.66 0.12 0.04 0.05 0.28 0.22 0.24
SAR 0.34 0.55 0.36 0.16 0.3 0.29 0.8 0.69 0.78 0.67 0.72 0.73
MESS 0.04 0.24 0.15 0 0.05 0.05 0.08 0.27 0.17 0.05 0.06 0.03

SDEM3 SDEM with 2 lags 0.94 0.7 0.72 0.99 0.89 0.92 0.91 0.63 0.08 0.99 0.83 0.27
SAR 0.04 0.12 0.08 0 0.04 0.02 0.05 0.21 0.48 0.01 0.1 0.37
MESS 0.02 0.18 0.2 0.01 0.07 0.06 0.04 0.16 0.44 0 0.07 0.36

SAR SDEM with 2 lags 0.01 0.04 0 0.15 0.19 0 0 0 0 0.01 0.01 0
SAR 0.86 0.84 0.92 0.84 0.77 0.82 0.85 0.79 0.94 0.97 0.94 0.81
MESS 0.13 0.12 0.08 0.01 0.04 0.18 0.15 0.21 0.06 0.02 0.05 0.19

MESS SDEM with 2 lags 0.03 0 0 0.15 0.18 0 0 0 0 0 0.03 0
SAR 0.91 0.68 0.1 0.83 0.71 0.04 0.88 0.54 0.11 0.98 0.85 0.03
MESS 0.06 0.32 0.9 0.02 0.11 0.96 0.12 0.46 0.89 0.02 0.12 0.97

Low: ρ0 = 0.2, λ0 = 0.2 and μ0 = −0.0969;
Mod: ρ0 = 0.4, λ0 = 0.4 and μ0 = −0.5108;
High: ρ0 = 0.8, λ0 = 0.8 and μ0 = −1.6094;
SDEM1: (c0,σ0

2,β0,β10,β20) = (2,1,2.0185,1.6526,0.9070);
SDEM2: (c0,σ0

2,β0,β10,β20) = (2,2,1.2616,1.0329,0.5669);
SDEM3: (c0,σ0

2,β0,β10,β20) = (2,1,1.6526,2.0185,1.6526);
SAR: (c0,σ0

2,β0) = (2,1,1);
MESS: (c0,σ0

2,β0) = (2,1,1).
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DGPs for each model. The DGP1 and DGP2 of the SDEM model with 2
lags are:

ρ ¼ 0:4; c ¼ 2;σ2 ¼ 1;

β̃ i ¼ 8�
exp − i−1ð Þ2=5

� �
ffiffiffiffiffiffi
5π

p ; i ¼ 1;2;3;

β ¼ β̃1 ¼ 2:0185;β1 ¼ β̃2 ¼ 1:6526;β2 ¼ β̃3 ¼ 0:9070:

ð5:1Þ

ρ ¼ 0:4; c ¼ 2;σ2 ¼ 2;

β̃ i ¼ 5�
exp − i−1ð Þ2=5

� �
ffiffiffiffiffiffi
5π

p ; i ¼ 1;2;3;

β ¼ β̃1 ¼ 1:2616;β1 ¼ β̃2 ¼ 1:0329;β2 ¼ β̃3 ¼ 0:5669:

ð5:2Þ
Table 10
Model frequencies for the SDEM model with 2 lags, the SAR model and the MESS model: la

DGP Model/prior L = 1

p = 1, ξ = 1 p ¼
ffiffiffiffiffiffi
10

p
; ξ ¼

p

Low Mod High Low Mo

SDEM1 SDEM with 2 lags 1 1 1 1 1
SAR 0 0 0 0 0
MESS 0 0 0 0 0

SDEM2 SDEM with 2 lags 1 0.85 0.84 1 0.9
SAR 0 0.11 0.16 0 0.0
MESS 0 0.04 0 0 0.0

SDEM3 SDEM with 2 lags 1 1 1 1 1
SAR 0 0 0 0 0
MESS 0 0 0 0 0

SAR SDEM with 2 lags 0 0.01 0 0.02 0.0
SAR 1 0.99 1 0.98 0.9
MESS 0 0 0 0 0

MESS SDEM with 2 lags 0.03 0 0 0.14 0.0
SAR 0.46 0.97 0 0.48 0.9
MESS 0.51 0.03 1 0.38 0.0

Low: ρ0 = 0.2, λ0 = 0.2 and μ0 = −0.0969;
Mod: ρ0 = 0.4, λ0 = 0.4 and μ0 = −0.5108;
High: ρ0 = 0.8, λ0 = 0.8 and μ0 = −1.6094;
SDEM1: (c0,σ0

2,β0,β10,β20) = (2,1,2.0185,1.6526,0.9070);
SDEM2: (c0,σ0

2,β0,β10,β20) = (2,2,1.2616,1.0329,0.5669);
SDEM3: (c0,σ0

2,β0,β10,β20) = (2,1,1.6526,2.0185,1.6526);
SAR: (c0,σ0

2,β0) = (2,1,1);
MESS: (c0,σ0

2,β0) = (2,1,1).
And the DGP3 with 2 lags is:

ρ ¼ 0:4; c ¼ 2;σ2 ¼ 1;

β̃ i ¼ 8�
exp − i−2ð Þ2=5

� �
ffiffiffiffiffiffi
5π

p ; i ¼ 1;2;3;

β ¼ β̃1 ¼ 1:6526;β1 ¼ β̃2 ¼ 2:0185;β2 ¼ β̃3 ¼ 1:6526:

ð5:3Þ

That is, we consider a moderate spatial interaction effect of ρ = 0.4
for the model. The lag parameter βis are generated as the ordinates of
the normal density. The differences for the three DGPs are on the fea-
ture of those βis and σ2. For DGP1, the βis are declining in neither a geo-
metrical pattern nor an exponential pattern. For DGP2, the declining
rge sample.

L = 4.07ffiffiffi
3 p = 1, ξ = 1 p ¼

ffiffiffiffiffiffi
10

p
; ξ ¼

ffiffiffi
3

p

d High Low Mod High Low Mod High

0.99 1 1 0.99 1 1 1
0.01 0 0 0.01 0 0 0
0 0 0 0 0 0 0

4 0.93 1 0.52 0.5 1 0.76 0.65
4 0.07 0 0.3 0.5 0 0.18 0.35
2 0 0 0.18 0 0 0.06 0

1 1 1 1 1 1 0.99
0 0 0 0 0 0 0
0 0 0 0 0 0 0.01

5 0.02 0 0 0 0 0.03 0
5 0.98 1 1 1 0.99 0.97 1

0 0 0 0 0.01 0 0
5 0 0 0 0 0 0 0
3 0 0.42 0.97 0 0.64 0.98 0
2 1 0.58 0.03 1 0.36 0.02 1



Table 11
Model frequencies for the SDEM model with 3 lags, the SAR model and the MESS model: small sample.

DGP Model/prior L = 0.55 L = 1

p = 1, ξ = 1 p ¼
ffiffiffiffiffiffi
10

p
; ξ ¼

ffiffiffi
3

p
p = 1, ξ = 1 p ¼

ffiffiffiffiffiffi
10

p
; ξ ¼

ffiffiffi
3

p

Low Mod High Low Mod High Low Mod High Low Mod High

SDEM1 SDEM with 3 lags 0.84 0.24 0.02 0.93 0.68 0.11 0.89 0.69 0.1 1 0.92 0.48
SAR 0.14 0.57 0.68 0.04 0.25 0.59 0.05 0.21 0.67 0 0.05 0.3
MESS 0.05 0.19 0.3 0.03 0.07 0.3 0.06 0.1 0.23 0 0.03 0.22

SDEM2 SDEM with 3 lags 0.86 0.61 0.30 0.97 0.9 0.77 0.88 0.48 0.11 0.99 0.83 0.77
SAR 0.08 0.31 0.48 0.03 0.08 0.08 0.08 0.41 0.62 0.01 0.14 0.08
MESS 0.06 0.08 0.22 0 0.02 0.15 0.04 0.11 0.27 0 0.03 0.15

SDEM3 SDEM with 3 lags 0.83 0.56 0.02 0.99 0.79 0.15 0.98 0.79 0.1 1 0.94 0.53
SAR 0.11 0.28 0.54 0.01 0.16 0.53 0.01 0.13 0.56 0 0.01 0.21
MESS 0.06 0.16 0.44 0 0.05 0.32 0.01 0.08 0.34 0 0.05 0.26

SAR SDEM with 3 lags 0.01 0 0 0.09 0.13 0.01 0.01 0 0 0.11 0.03 0
SAR 0.84 0.79 0.92 0.89 0.81 0.89 0.89 0.82 0.94 0.86 0.94 0.86
MESS 0.15 0.21 0.08 0.02 0.06 0.1 0.1 0.18 0.06 0.03 0.03 0.14

MESS SDEM with 3 lags 0.01 0 0 0.03 0.08 0 0.02 0.01 0 0.06 0.06 0
SAR 0.88 0.59 0.06 0.94 0.79 0.03 0.86 0.61 0.12 0.92 0.83 0.04
MESS 0.11 0.41 0.94 0.03 0.13 0.97 0.12 0.38 0.88 0.02 0.11 0.96

Low: ρ0 = 0.2, λ0 = 0.2 and μ0 = −0.0969;
Mod: ρ0 = 0.4, λ0 = 0.4 and μ0 = −0.5108;
High: ρ0 = 0.8, λ0 = 0.8 and μ0 = −1.6094;
SDEM1: (c0,σ0

2,β0,β10,β20,β30) = (2,1,1.3180,1.3035,1.1535,0.9135);
SDEM2: (c0,σ0

2,β0,β10,β20,β30) = (2,2,1.0544,1.0428,0.9228,0.7308);
SDEM3: (c0,σ0

2,β0,β10,β20,β30) = (2,1,1.2579,1.3298,1.2579,1.0648);
SAR: (c0,σ0

2,β0) = (2,1,1);
MESS: (c0,σ0

2,β0) = (2,1,1).
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pattern of βis is similar to DGP1 except that the magnitudes of the βis
become smaller. Moreover, for DGP3, the βis trace out a unimodal
shape with the maximum value at βi. Similarly, the DGP1 and DGP2 of
the SDEM model with 3 lags are:

ρ ¼ 0:4; c ¼ 2;σ2 ¼ 1;

β̃ i ¼ 10�
exp − i−1:4ð Þ2=18

� �
ffiffiffiffiffiffiffiffiffi
18π

p ; i ¼ 1;2;3;4;

β ¼ β̃1 ¼ 1:3180;β1 ¼ β̃2 ¼ 1:3035;

β2 ¼ β̃3 ¼ 1:1535;β2 ¼ β̃4 ¼ 0:9135:

ð5:4Þ
Table 12
Model frequencies for the SDEM model with 3 lags, the SAR model and the MESS model: la

DGP Model/prior L = 0.55

p = 1, ξ = 1 p ¼
ffiffiffiffiffiffi
10

p
; ξ ¼

p

Low Mod High Low Mo

SDEM1 SDEM with 3 lags 1 1 0.73 1 1
SAR 0 0 0.26 0 0
MESS 0 0 0.01 0 0

SDEM2 SDEM with 3 lags 1 1 0.58 1 1
SAR 0 0 0.42 0 0
MESS 0 0 0 0 0

SDEM3 SDEM with 3 lags 1 1 0.91 1 1
SAR 0 0 0.07 0 0
MESS 0 0 0.02 0 0

SAR SDEM with 3 lags 0 0 0 0.01 0.0
SAR 1 1 1 0.98 0.9
MESS 0 0 0 0.01 0

MESS SDEM with 3 lags 0.03 0 0 0.05 0.0
SAR 0.47 0.89 0 0.57 0.9
MESS 0.5 0.11 1 0.38 0.0

Low: ρ0 = 0.2, λ0 = 0.2 and μ0 = −0.0969;
Mod: ρ0 = 0.4, λ0 = 0.4 and μ0 = −0.5108;
High: ρ0 = 0.8, λ0 = 0.8 and μ0 = −1.6094;
SDEM1: (c0,σ0

2,β0,β10,β20,β30) = (2,1,1.3180,1.3035,1.1535,0.9135);
SDEM2: (c0,σ0

2,β0,β10,β20,β30) = (2,2,1.0544,1.0428,0.9228,0.7308);
SDEM3: (c0,σ0

2,β0,β10,β20,β30) = (2,1,1.2579,1.3298,1.2579,1.0648);
SAR: (c0,σ0

2,β0) = (2,1,1);
MESS: (c0,σ0

2,β0) = (2,1,1).
ρ ¼ 0:4; c ¼ 2;σ2 ¼ 2;

β̃ i ¼ 8�
exp − i−1:4ð Þ2=18

� �
ffiffiffiffiffiffiffiffiffi
18π

p ; i ¼ 1;2;3;4;β ¼ β̃1 ¼ 1:0544;

β1 ¼ β̃2 ¼ 1:0428;β2 ¼ β̃3 ¼ 0:9228;β3 ¼ β̃4 ¼ 0:7308

ð5:5Þ

and the DGP3 with 3 lags is

ρ ¼ 0:4; c ¼ 2;σ2 ¼ 1;

β̃ i ¼ 10�
exp − i−2ð Þ2=18

� �
ffiffiffiffiffiffiffiffiffi
18π

p ; i ¼ 1;2;3;4;β ¼ β̃1 ¼ 1:2579;

β1 ¼ β̃2 ¼ 1:3298;β2 ¼ β̃3 ¼ 1:2579;β3 ¼ β̃4 ¼ 1:0648:

ð5:6Þ
rge sample.

L = 1ffiffiffi
3 p = 1, ξ = 1 p ¼

ffiffiffiffiffiffi
10

p
; ξ ¼

ffiffiffi
3

p

d High Low Mod High Low Mod High

0.87 1 1 0.85 1 1 0.96
0.13 0 0 0.14 0 0 0.04
0 0 0 0.01 0 0 0
0.86 1 1 0.51 1 1 0.81
0.14 0 0 0.49 0 0 0.18
0 0 0 0 0 0 0.01
0.98 1 1 0.99 1 1 0.99
0.01 0 0 0.01 0 0 0.01
0.01 0 0 0 0 0 0

3 0.06 0 0 0 0.01 0.09 0.08
7 0.94 0.99 1 1 0.99 0.91 0.92

0 0.01 0 0 0 0 0
3 0 0.01 0 0 0.05 0.04 0
1 0 0.51 0.9 0 0.73 0.85 0
6 1 0.48 0.1 1 0.22 0.11 1



23 This function is taken from LeSage's Matlab code for spatial econometrics, which
can be found at http://www.spatial-econometrics.com/.

Table 13
Misspecified model frequencies for the SDEM model with 3 lags, the SAR model and the MESS model: small sample.

DGP Model/prior L = 1 L = 4.07

p = 1, ξ = 1 p ¼
ffiffiffiffiffiffi
10

p
; ξ ¼

ffiffiffi
3

p
p = 1, ξ = 1 p ¼

ffiffiffiffiffiffi
10

p
; ξ ¼

ffiffiffi
3

p

Low Mod High Low Mod High Low Mod High Low Mod High

SDEM1 SDEM with 2 lags 0.91 0.65 0.14 0.98 0.96 0.48 0.68 0.36 0.02 0.94 0.66 0.11
SAR 0.08 0.21 0.48 0 0.03 0.27 0.24 0.42 0.75 0.05 0.25 0.59
MESS 0.01 0.14 0.38 0.02 0.01 0.25 0.08 0.22 0.23 0.01 0.09 0.3

SDEM2 SDEM with 2 lags 0.89 0.46 0.37 0.98 0.95 0.88 0.48 0.14 0.03 0.62 0.33 0.12
SAR 0.07 0.44 0.44 0.01 0.05 0.07 0.48 0.72 0.74 0.37 0.63 0.59
MESS 0.04 0.1 0.19 0.01 0 0.05 0.04 0.14 0.23 0.01 0.04 0.29

SDEM3 SDEM with 2 lags 0.93 0.8 0.12 1 0.95 0.43 0.94 0.65 0.04 1 0.97 0.47
SAR 0.05 0.14 0.48 0 0.03 0.35 0.04 0.23 0.62 0 0.03 0.33
MESS 0.02 0.06 0.4 0 0.02 0.22 0.02 0.12 0.34 0 0 0.2

Low: ρ0 = 0.2, λ0 = 0.2 and μ0 = −0.0969;
Mod: ρ0 = 0.4, λ0 = 0.4 and μ0 = −0.5108;
High: ρ0 = 0.8, λ0 = 0.8 and μ0 = −1.6094;
SDEM1: (c0,σ0

2,β0,β10,β20,β30) = (2,1,1.3180,1.3035,1.1535,0.9135);
SDEM2: (c0,σ0

2,β0,β10,β20,β30) = (2,2,1.0544,1.0428,0.9228,0.7308);
SDEM3: (c0,σ0

2,β0,β10,β20,β30) = (2,1,1.2579,1.3298,1.2579,1.0648);

Table 14
Misspecified model frequencies for the SDEM model with 3 lags, the SAR model and the MESS model: large sample.

DGP Model/prior L = 1 L = 4.07

p = 1, ξ = 1 p ¼
ffiffiffiffiffiffi
10

p
; ξ ¼

ffiffiffi
3

p
p = 1, ξ = 1 p ¼

ffiffiffiffiffiffi
10

p
; ξ ¼

ffiffiffi
3

p

Low Mod High Low Mod High Low Mod High Low Mod High

SDEM1 SDEM with 2 lags 1 1 0.75 1 1 0.78 1 1 0.57 1 1 0.79
SAR 0 0 0.24 0 0 0.21 0 0 0.41 0 0 0.21
MESS 0 0 0.01 0 0 0.01 0 0 0.02 0 0 0

SDEM2 SDEM with 2 lags 1 1 0.44 1 1 0.62 1 1 0.18 1 1 0.35
SAR 0 0 0.52 0 0 0.38 0 0 0.81 0 0 0.64
MESS 0 0 0.04 0 0 0 0 0 0.01 0 0 0.01

SDEM3 SDEM with 2 lags 1 1 0.87 1 1 0.94 1 1 0.72 1 1 0.84
SAR 0 0 0.12 0 0 0.05 0 0 0.26 0 0 0.14
MESS 0 0 0.01 0 0 0.01 0 0 0.02 0 0 0.02

Low: ρ0 = 0.2, λ0 = 0.2 and μ0 = −0.0969;
Mod: ρ0 = 0.4, λ0 = 0.4 and μ0 = −0.5108;
High: ρ0 = 0.8, λ0 = 0.8 and μ0 = −1.6094;
SDEM1: (c0,σ0

2,β0,β10,β20,β30) = (2,1,1.3180,1.3035,1.1535,0.9135);
SDEM2: (c0,σ0

2,β0,β10,β20,β30) = (2,2,1.0544,1.0428,0.9228,0.7308);
SDEM3: (c0,σ0

2,β0,β10,β20,β30) = (2,1,1.2579,1.3298,1.2579,1.0648);

831X. Han, L. Lee / Regional Science and Urban Economics 43 (2013) 816–837
Finally, the DGP1 and DGP2 of the SDEM model with 5 lags are

ρ ¼ 0:4; c ¼ 2;σ2 ¼ 1;

β̃ i ¼ 12�
exp − i−1:2ð Þ2=20

� �
ffiffiffiffiffiffiffiffiffi
20π

p ; i ¼ 1;2;3;4;5;6;

β ¼ β̃1 ¼ 1:5109;β1 ¼ β̃2 ¼ 1:4662;β2 ¼ β̃3 ¼ 1:2875;

β3 ¼ β̃4 ¼ 1:0229;β4 ¼ β̃5 ¼ 0:7354;β5 ¼ β̃6 ¼ 0:4784:

ð5:7Þ

ρ ¼ 0:4; c ¼ 2;σ2 ¼ 2;

β̃ i ¼ 10�
exp − i−1:2ð Þ2=20

� �
ffiffiffiffiffiffiffiffiffi
20π

p ; i ¼ 1;2;3;4;5;6;

β ¼ β̃1 ¼ 1:2590;β1 ¼ β̃2 ¼ 1:2218;β2 ¼ β̃3 ¼ 1:0729;

β3 ¼ β̃4 ¼ 0:8524;β4 ¼ β̃5 ¼ 0:6128;β5 ¼ β̃6 ¼ 0:3987:

ð5:8Þ

The DGP3 is

ρ ¼ 0:4; c ¼ 2;σ2 ¼ 1;

β̃ i ¼ 12�
exp − i−1:2ð Þ2=20

� �
ffiffiffiffiffiffiffiffiffi
20π

p ; i ¼ 1;2;3;4;5;6;

β ¼ β̃1 ¼ 1:4400;β1 ¼ β̃2 ¼ 1:5139;β2 ¼ β̃3 ¼ 1:4400;

β3 ¼ β̃4 ¼ 1:2395;β4 ¼ β̃5 ¼ 0:9653;β5 ¼ β̃6 ¼ 0:6802:

ð5:9Þ
The bar charts of the DGP1 and DGP3 for the βis of the SDEM
model with 2, 3 and 5 lags are depicted in Fig. 1. The error terms
vnis of the SDEM model are generated as i.i.d sample from the normal
distribution with different variances. For the DGP1 and DGP3, the var-
iance of vnis is 1; while for DGP2, the variance is set to be 2. As a result,
the variation in the error terms is relatively larger in DGP2 than in
DGP1 and DGP3. The exogenous regressors Xn are generated from
the standard normal distribution. The spatial weight matrix Wn is
constructed by the function “makeneighborsw”,23 which generates a
row-normalized spatial weight matrix based on m nearest neighbors.
In the experiment, m is set to be 5.

We consider both the uninformative and informative smoothness
prior for the SDEM model. The values of the prior parameters are:

SDEM with 2 lags : c ¼ 0; p ¼ 1 or 10; L ¼ 1 or 4:07;
SDEM with 3 lags : c ¼ 0; p ¼ 1 or 10; L ¼ 0:55 or 1;
SDEM with 5 lags : c ¼ 0; p ¼ 1 or 10; L ¼ 0:5 or 1;
a ¼ 6; b ¼ 4;d ¼ 1:

With d = 1, we only consider second order difference for the lag
coefficient vector δ. Two settings of the prior parameters are used
for c and δ. Specifically, for the model with 2 lags, p = 1 or 10 is
used, respectively reflecting a tight and moderate normal prior for

http://www.spatial-econometrics.com/


Table 15
Descriptive statistics for variables (N = 427).

Variable Mean Maximum Minimum Standard deviation

Manufacturing employment as a percentage of private wage and salary employment 18.44 46.18 0.717 11.47
Percentage of population aged 18–64 58.65 79 48.5 4.12
Percentage of population who are female 50.33 55.6 37.2 1.74
Percentage of population nonwhite 11.24 83.6 0.3 12.39
Percentage of population age 25 or above who are high school graduates or higher 77.81 95.3 46.1 8.92
Percentage of population aged 25 or above with a bachelor's degree or higher 15.95 60.2 5.4 7.38
Right to work dummy variable 0.52 1 0 0.5
Small business survival index 41.29 52.15 24.88 7.02
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c; L = 1 or 4.07 is used, respectively reflecting a tight and moderate
smoothness prior for δ. For the model with 3 and 5 lags, a tight and
moderate normal prior for c with p = 1 or 10 is still used, but we
change the tight and moderate smoothness prior to L = 0.55 or 1
and L = 0.5 or 1, respectively. The estimation procedures we consid-
ered are: the ML estimation and the Bayesian estimation with informa-
tive and uninformative smoothness priors. For Bayesian estimation, we
run Markov chains of different lengths for different models. For models
with 2 and 3 lags, the Markov chain length is 15,000 in each repetition
except that for DGP2, the chain length increases to 30,000.24 For model
with 5 lags, theMarkov chain length is 30,000 for all DGPs.25We burn in
the first 20% draws26 of each chain and collect every 10th draws as final
draws.27 Some selected trace plots of the Bayesian estimates of ρ in the
Monte Carlo study are depicted in Figs. 2–4, to demonstrate the conver-
gence of the MCMC sampler.

Lastly, besides estimation of the above three models, we also check
the performance of misspecified Bayesian estimator for the SDEM
model with 3 lags. We try the Bayesian estimation for a model with 2
lags when the DGP is the SDEM model with 3 lags. We want to see
how a misspecification can affect the Bayesian estimates.

Furthermore, for model selection, the number of experiment rep-
etition is reduced to 100.28 We consider both a small sample size of
100 and a large sample size of 1200 in each repetition. We report
the frequency in which the true model is assigned the highest poste-
rior probability. The DGPs are the SDEM models with 2 or 3 lags, the
SAR model and the MESS model. Specifically, the DGPs of the SDEM
model are the ones in Eqs. (5.1)–(5.6), except that we consider
three different values of ρ: ρ = 0.2, ρ = 0.4 and ρ = 0.8. The ρ =
0.2 corresponds to a weak spatial interaction effect, ρ = 0.4 corre-
sponds to a moderate spatial interaction effect and ρ = 0.8 corre-
sponds to a strong spatial interaction effect. The DGP for the SAR
model is:

λ ¼ 0:2 or 0:4 or 0:8; c ¼ 2;β ¼ 1;σ2 ¼ 1: ð5:10Þ
24 We apply the method in Raftery and Lewis (1992) to decide the adequate length of
our MCMC sampler. Raftery and Lewis provide an answer to the adequate length of the
chain of draws based on the accuracy of the posterior summaries desired by the user.
Based on their method, the maximum number of draws needed for the SDEM models
with 2 and 3 lags is around 4000 for all DGPs. Here we increase the length of our sam-
pler to 15,000 or 30,000 to ensure the convergence of the chains.
25 With more lags in the model, the autocorrelation of ρ in the sampling process be-
comes higher. Based on Raftery and Lewis' method, the maximum number of draws
needed for the SDEM model with 5 lags is around 7000. So we increase the length of
Markov chains to make sure the chains eventually converge.
26 The estimation results change little when we burn in the first 50% draws.
27 As suggested by a referee, given that the chains are well behaved as exhibited by
the trace plots, thinning 10% might be too much and unnecessary. We also double
check some estimation results and redraw some trace plots of the SDEM model with-
out thinning the chains. The estimation results and the trace plots turn out to be similar
to the previous ones.
28 We have increased the repetition number to 400 but the model frequencies change
little.
The DGP for the MESS model is:

μ ¼ −0:0969 or −0:5108 or −1:6094; c ¼ 2; β ¼ 1; σ2 ¼ 1:

ð5:11Þ

29
The priors of the parameters of the SAR model are specified as
Eq. (4.8), and the values of the prior parameters are

p ¼ 1 or
ffiffiffiffiffiffiffi
10;

p
a1 ¼ 6; b1 ¼ 4; β1 ¼ Okþ1: ð5:12Þ30

The priors of the parameters of the MESS model are the same as
Eq. (4.13) and the values of prior parameters are

p ¼ 1 or
ffiffiffiffiffiffiffi
10;

p
a2 ¼ 6; b2 ¼ 4; β1 ¼ Okþ1; μ ¼ 0;

ξ ¼ 1 οr
ffiffiffi
3

p
:

ð5:13Þ

Specifically, L = 1 or 4.07, or L = 0.55 or 1, is used for δ,
representing either a tight or moderate informative smoothness
prior. The p = 1 or

ffiffiffiffiffiffi
10

p
is used to reflect a tight and moderate normal

priors with mean 0 for β1.31 ξ ¼ 1 or
ffiffiffi
3

p
is applied to the normal

prior for μ, reflecting a continuum from tight to moderate. Finally,
we evaluate the marginal likelihood for each model based on the sim-
plified expressions in Section 4. Then posterior probabilities are com-
puted and compared. Lastly, we investigate a misspecified SDEM
model for model comparison. We evaluate the posterior probability
of the SDEM model with 2 lags when the DGP is the model with 3
lags. We want to see whether the SDEM model, even misspecified,
can explain some features of the true DGP or not, compared with
the SAR and the MESS models.

5.2. Results

Tables 1–2 summarize estimation results for the SDEM model
with 2 and 3 lags. For model with 2 lags, ML estimates and Bayesian
estimates of the spatial parameter ρ, the coefficients c and β are sim-
ilar for all DGPs. Estimates of lag coefficients β1 and β2 are also similar
for the ML approach and the Bayesian approach, except that the
Bayesian estimates have a slightly smaller standard deviation in
most cases. For model with 3 lags, ML estimates and the Bayesian es-
timates of ρ, c and β are still similar. However, estimates of the high
order lag coefficients β2 and β3 differ for the two approaches. For all
DGPs, the standard deviations of Bayesian estimates of β2 and β3 are
smaller than those of ML estimates. Furthermore, for both informa-
tive and uninformative smoothness priors, the smaller L is, the smaller
29 LeSage and Pace (2007) provide a correspondence between μ and λ, which is
λ = 1 − exp(μ). So μ = −0.0969 corresponds to λ = 0.0924, which refers to a weak
interaction effect. μ = −0.5108 corresponds to λ = 0.4, which refers to a moderate
interaction effect. μ = −1.6094 corresponds to λ = 0.8, which refers to a strong inter-
action effect.
30 Here k = 1.
31 We also set the prior parameter p of the intercept coefficient c in the SDEM model
to be

ffiffiffiffiffiffi
10

p
.



Fig. 5. Trace plots of ρ, λ and μ in empirical application.

833X. Han, L. Lee / Regional Science and Urban Economics 43 (2013) 816–837
the standard deviations of most Bayesian estimates of βis are. This sug-
gests that a tighter smoothness prior might provide us with Bayesian es-
timates with smaller standard deviations. Finally, Tables 3–4 provide
estimation results for the SDEM model with 2 and 3 lags when the step
size hρ is fixed in the M–H algorithm. The results are similar to that in
Tables 1 and 2.

Table 5 gives the estimation results for the SDEM model with 5
lags. Estimates for ρ, c and β are still similar for the two approaches.
But the standard deviations of MLEs for the βis are larger than those
of Bayesian estimates, especially for β4 and β5. In particular, for
DGP2, most Bayesian estimates of β4 are closer to the true value
with smaller standard deviations, compared with the ML estimates.
Table 6 provides estimation results for the SDEM model with 5 lags
when hρ is fixed in the M–H algorithm. The results are similar to
that in Table 5.

Table 7 provides the misspecified Bayesian estimation results of
the SDEM model with 3 lags, in which we estimate the model with
2 lags but the DGP is the model with 3 lags. The Bayesian estimates
for ρ, c and β are still fine. But there are larger biases for estimates
of β1 and β2, compared with the Bayesian estimates for the model
with 3 lags in Table 2. Table 8 summarizes the misspecified Bayesian
estimation results of the SDEM model with 3 lags, when hρ is fixed in
the M–H algorithm. The results are similar to that in Table 7.

Table 9 summarizes model frequencies for the SDEMmodel with 2
lags, the SAR model and the MESS model when the sample size is 100.
When the DGPs are the SDEMmodel, the Bayesian routines are not so

image of Fig.�5


Table 16
Selected ML estimation results for SDEM, SAR and MESS models.

Independent variable SDEM SAR MESS

Constant −327.3961 (−3.99)⁎⁎⁎ −41.4515 (−2.74)⁎⁎⁎ −53.4244 (−3.24)⁎⁎⁎

PCT of population aged 18–64 0.3934 (1.93)⁎ 0.3041 (2.96)⁎⁎⁎ 0.3968 (3.56)⁎⁎⁎

PCT of population female 0.6169 (1.92)⁎ 0.6148 (3.09)⁎⁎⁎ 0.7904 (3.66)⁎⁎⁎

PCT of population nonwhite −0.050 (−1.04) −0.0563 (−2.00)⁎⁎ −0.0686 (−2.25)⁎⁎

PCT of population age 25+, high school graduates −0.3468 (−3.16)⁎⁎⁎ −0.0469 (−0.86) −0.0530 (−0.89)
PCT of population aged 25+, with a bachelor's degree or higher −0.1660 (−1.61) −0.2805 (−3.95)⁎⁎⁎ −0.3411 (−4.43)⁎⁎⁎

RTW dummy variable 2.7405 (3.90)⁎⁎⁎ 2.6552 (4.10)⁎⁎⁎ 2.8999 (4.10)⁎⁎⁎

SBSI 0.1459 (2.47)⁎⁎ 0.1273 (2.66)⁎⁎⁎ 0.1459 (2.79)⁎⁎⁎

Wn × PCT of population aged 25+ with a bachelor's degree or higher −0.1795 (−0.70) NA NA
Wn

2 × PCT of population aged 25+ with a bachelor's degree or higher −0.9593 (−2.13)⁎⁎ NA NA
Wn × RTW dummy −3.3675 (−1.29) NA NA
Wn

2 × RTW dummy 2.6261 (0.43) NA NA
ρ 0.7260 (21.67)⁎⁎⁎

λ 0.7200 (23.01)⁎⁎⁎

μ −0.9983 (−13.36)⁎⁎⁎

PCT: percentage.
SBSI: small business survival index.
t-Statistics are in parentheses.

⁎ Significant at the 10% level.
⁎⁎ Significant at 5% level.

⁎⁎⁎ Significant at 1% level.

Table 17
Bayesian estimation of the SDEM model with 2 lags for empirical data.

L = 4, p = 12 L = 4, p = 120

Independent variable Mean S.D. 95% CI Mean S.D. 95% CI

Constant −112.0046 59.5559 (−229.1331, 3.9758) −310.4615 88.1479 (−479.4242, −133.9901)
PCT of population aged 18–64 0.4193 0.2015 (0.0235, 0.8108) 0.4004 0.2024 (0.0073, 0.8001)
PCT of population female 0.6583 0.3181 (0.0254, 1.2858) 0.6294 0.3179 (0.0124, 1.2542)
PCT of population nonwhite −0.0392 0.0478 (−0.1328, 0.0545) −0.0479 0.0479 (−0.1431, 0.0464)
PCT of population aged 25+, high school graduates −0.3386 0.1090 (−0.5528, −0.1228) −0.3467 0.1104 (−0.5650, −0.1308)
PCT of population aged 25+, with a bachelor's degree or higher −0.1819 0.1028 (−0.3815, 0.0214) −0.1704 0.1027 (−0.3728, 0.0318)
RTW dummy 2.8051 0.6917 (1.4370, 4.1578) 2.7643 0.6942 (1.4034, 4.1196)
SBSI 0.1531 0.0588 (0.0373, 0.2689) 0.1480 0.0590 (0.0323, 0.2634)
Wn × PCT of population aged 25+ with a bachelor's degree or higher −0.1181 0.2551 (−0.6193, 0.3763) −0.1847 0.2555 (−0.6787, 0.3191)
Wn

2 × PCT of population aged 25+ with a bachelor's degree or higher −0.5632 0.4612 (−1.4669, 0.3443) −0.9111 0.4604 (−1.8115, −0.0037)
Wn × RTW dummy −3.2090 2.5930 (−8.3171, 1.8389) −3.2259 2.6062 (−8.3054, 1.9086)
Wn

2 × RTW dummy 0.4815 0.3597 (−11.9032, 12.9748) 2.6135 6.3111 (−9.6535, 15.1801)
ρ 0.7720 0.0319 (0.7072, 0.0319) 0.7493 0.0334 (0.6822, 0.8138)

CI: credible interval; PCT: percentage; SBSI: small business survival index.
Number of iterations is 30,000. We burn in the first 20% draws.
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good at pointing to the proper model in some cases. This is so, in par-
ticular for DGP2, in which we have a larger variation in the error
terms. With moderate or high spatial dependence the SAR model can
capture some features of the SDEM DGP. For DGP3, in which we have a
unimodal shape for the lag coefficients, the SDEMmodel has the largest
posterior probability in most cases. When the DGP is the SARmodel, the
frequency of the SARmodel is the largest in all cases. Finally, if the DGP is
the MESS model, the SAR model can capture some features of the MESS
model in cases of low and moderate spatial dependence. But as interac-
tion becomes stronger, the MESS model tends to have the largest
frequency.32

Table 10 summarizes model frequencies for the SDEMmodel with
2 lags, the SAR model and the MESS model when the sample size in-
creases to 1200. For the SDEM model, the Bayesian routines work
much better than the small sample setting. The frequency of the SDEM
model with 2 lags is the largest in most cases for all DGPs. The only ex-
ception is that, for DGP2, with moderate or high spatial dependence
and a tight normal prior for β1, the SAR model is able to capture some
features of the SDEMDGP.When the DGP is the SARmodel, the frequen-
cy of the SARmodel is the largest in all cases.Moreover, the SARmodel is
32 This is consistent with Han and Lee (2013). In their Monte Carlo studies they find
that with strong spatial dependence the J-test statistics can have good power.
still able to capture some features of the MESS DGP unless we have
strong spatial interaction effect.

Table 11 provides model frequencies for the SDEM model with 3
lags, the SAR model and the MESS model when the sample size is
100. Note that the DGPs of the SAR model and the MESS model are
the same as in Table 9. But the Ls used are different from those in
Table 9. For the SDEM model with 3 lags, the Bayesian routines are
better at pointing out the propermodel, comparedwith the small sample
size setting of the SDEM model with 2 lags. However, with high spatial
dependence and a tight normal prior for β1, the SAR model can capture
some features of the SDEM model. When the DGP is the SAR model, the
frequency of the SAR model is still largest in all cases. If the DGP is the
MESS model, the SAR model is a good substitute of the MESS model un-
less we have strong spatial dependence.

Table 12 provides model frequencies for the SDEM model with 3
lags, the SAR model and the MESS model when the sample size in-
creases to 1200. The SDEM model still has the highest frequencies
for all DGPs from the SDEM model. When the DGP is the SAR model,
the frequency of the SAR model is the largest in all cases. If the DGP
is the MESS model, the SAR model is a good substitute of the MESS
model unless we have strong spatial dependence.

Table 13 summarizes the model frequencies for the misspecified
SDEM model, the SAR model and the MESS model when the sample



Table 18
Bayesian estimation of the SDEM model with 2 lags for empirical data: fix step size.

L = 4, p = 12 L = 4, p = 120

Independent variable Mean S.D. 95% CI Mean S.D. 95% CI

Constant −113.7841 59.2085 (−228.9005, 3.9486) −310.5735 88.6935 (−481.8439, −134.3320)
PCT of population aged 18–64 0.4185 0.2014 (0.0216, 0.8112) 0.3992 0.2000 (0.0044, 0.7909)
PCT of population female 0.6556 0.3180 (0.0274, 1.2765) 0.6270 0.3161 (0.0112, 1.2455)
PCT of population nonwhite −0.0401 0.0481 (−0.1343, 0.0548) −0.0472 0.0482 (−0.1418, 0.0473)
PCT of population aged 25+, high school graduates −0.3392 0.1085 (−0.5514, −0.1271) −0.3455 0.1094 (−0.5598, −0.1287)
PCT of population aged 25+, with a bachelor's degree or higher −0.1804 0.1031 (−0.3842, 0.0205) −0.1706 0.1029 (−0.3733, 0.0299)
RTW dummy 2.7959 0.6861 (1.4406, 4.1434) 2.7604 0.6967 (1.3988, 4.1249)
SBSI 0.1522 0.0590 (0.0359, 0.2690) 0.1473 0.0587 (0.0320, 0.2611)
Wn × PCT of population aged 25+ with a bachelor's degree or higher −0.1162 0.2557 (−0.6143, 0.3853) −0.1861 0.2574 (−0.6885, 0.3185)
Wn

2 × PCT of population aged 25+ with a bachelor's degree or higher −0.5639 0.4609 (−1.4611, 0.3440) −0.9146 0.4668 (−1.8197, 0.0052)
Wn × RTW dummy −3.2619 2.5900 (−8.3418, 1.8256) −3.2312 2.6049 (−8.3433, 1.8943)
Wn

2 × RTW dummy 0.4262 6.3598 (−12.0111, 12.9401) 2.5585 6.3100 (−9.7479, 15.0344)
ρ 0.7712 0.0318 (0.7056, 0.8314) 0.7500 0.0344 (0.6793, 0.8149)

CI: credible interval; PCT: percentage; SBSI: small business survival index.
Number of iterations is 30,000. We burn in the first 20% draws.

Table 19
Bayesian estimation of the SAR model for empirical data.

p = 12 p = 120

Independent variable Mean S.D. 95% CI Mean S.D. 95% CI

Constant −27.9891 12.4024 (−52.6765, −3.6341) −39.4747 14.7558 (−68.7888, −11.0081)
PCT of population aged 18–64 0.2371 0.0908 (0.0588, 0.4181) 0.2940 0.0997 (0.0989, 0.4925)
PCT of population female 0.4623 0.1705 (0.1245, 0.7996) 0.5927 0.1928 (0.2176, 0.9771)
PCT of population nonwhite −0.0640 0.0271 (−0.1162, −0.0111) −0.0574 0.0273 (−0.1111, −0.0029)
PCT of population aged 25+, high school graduates −0.0717 0.0516 (−0.3800, −0.1177) −0.0503 0.0534 (−0.4126, −0.1414)
PCT of population aged 25+, with a bachelor's degree or higher −0.2487 0.0669 (−0.3800, −0.1177) −0.2758 0.0690 (−0.4126, −0.1414)
RTW dummy 2.5362 0.6403 (1.2845, 3.8123) 2.6325 0.6461 (1.3528, 3.8929)
SBSI 0.1206 0.0472 (0.0274, 0.2138) 0.1260 0.0478 (0.0336, 0.2185)
λ 0.7202 0.0057 (0.7083, 0.7321) 0.7201 0.0055 (0.7073, 0.7327)

CI: credible interval; PCT: percentage; SBSI: small business survival index.
Number of iterations is 30,000. We burn in the first 20% draws.
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size is 100. When the DGP is the SDEM model with 3 lags, the fre-
quency of the misspecified SDEM model with 2 lags is the highest in
many cases. However, for DGP1 and DGP2, with moderate or high
spatial dependence and a moderate normal prior for β1, the SAR
model can capture some features of the DGP better than the SDEM
and the MESS models.

Table 14 summarizes the model frequencies for the misspecified
SDEM model, the SAR model and the MESS model when the sample
size increases to 1200. When the DGP is the SDEM model with 3
lags, the frequency of the misspecified SDEM model with 2 lags is
the highest in most cases. This implies that the SDEM model, even
misspecified, can still capture some features of the DGP better than
the SAR and the MESS models.

6. An empirical illustration

In this section, we apply the Bayesian estimation method and the
model selection procedure to the data set in Kalenkoski and Lacombe
(2006).33 Kalenkoski and Lacombe (2006) reexamine the effect of
right-to-work (RTW) laws on manufacturing employment34 after
controlling for spatial dependence. Their data set consists of
427 counties, which are selected if they locate on the border of a
RTW state and a non-RTW state. The dependent variable is manu-
facturing's employment as a percentage of total wage and salary em-
ployment in 2000. The key explanatory variable is the RTW dummy.
Besides, we include the small business survival index (SBSI), which is
33 We thank Kalenkoski and Lacombe for providing their data set.
34 There are a large literature regarding the effect of RTW laws on industrial employ-
ment. See Moore and Newman (1985) and Moore (1998) for more discussions.
a measure of the business climate for firms in a state, the percentage
of population aged 18–64, and other characteristics of the labor market
as explanatory variables. Descriptive statistics of all explanatory vari-
ables are summarized in Table 15. The empirical specifications we con-
sider are:

Yn ¼ cln þ Xnβ þWnXnβ1 þW2
nXnβ2 þ In−ρWnð Þ−1Vn;

Yn ¼ λWnYn þ cln þ Xnβ þ Vn;
Sexn μð ÞYn ¼ cln þ Xnβ þ Vn:

ð6:1Þ

The estimation methods we adopt are the ML method, and the
Bayesian estimation method for the SDEM model with smoothness
prior, the SAR model and the MESS model. We consider the informa-
tive smoothness prior for the SDEM model. The priors for the SAR
model and the MESS model are the same as those in Eqs. (4.8) and
(4.13). The value of the prior parameters is:

SDEM with 2 lags : L ¼ 4 or 8; p ¼ 12 or 120; a ¼ 6; b ¼ 4;
SAR : p ¼ 12 or 120; a1 ¼ 6; b1 ¼ 4;
MESS : p ¼ 12 or 120; ξ ¼ 1 or

ffiffiffi
3

p
; a2 ¼ 6; b2 ¼ 4:

Specifically, L = 4, p = 12, and ξ = 1 refer to a “tight” prior while
L = 8, p = 120, and ξ =

ffiffiffi
3

p
refer to a “moderate” prior. The trace

plots of ρ, λ and μ in the empirical study are depicted in Fig. 5. Fur-
thermore, we evaluate the marginal likelihood of each model based
on the expressions given in Section 4 and compare their posterior
probabilities.

Table 16 provides ML estimation results for the three models. The
estimate of ρ in the SDEM model is 0.7260 and highly significant. The
estimates of λ and μ in the SAR and MESS model are, respectively,
0.7200 and −0.9983. Both are significant at the 1% level. Therefore, all



Table 20
Bayesian estimation of the MESS model for empirical data.

p = 12, ξ = 1 p ¼ 120; ξ ¼
ffiffiffi
3

p

Independent variable Mean S.D. 95% CI Mean S.D. 95% CI

Constant −35.7935 13.9610 (−62.7098, −8.5029) −50.9230 16.5378 (−82.9973, −19.1507)
PCT of population aged 18–64 0.3075 0.1022 (0.1032, 0.5049) 0.3842 0.1125 (0.1645, 0.6079)
PCT of population female 0.5875 0.1934 (0.2113, 0.9643) 0.7616 0.2176 (0.3443, 1.1863)
PCT of population nonwhite −0.0771 0.0301 (−0.1366, −0.0188) −0.0701 0.0301 (−0.1289, −0.0106)
PCT of population aged 25+, high school graduates −0.0840 0.0570 (−0.1954, 0.0264) −0.0572 0.0587 (−0.1720, 0.0583)
PCT of population aged 25+, with a bachelor's degree or higher −0.2978 0.0745 (−0.4428, −0.1533) −0.3355 0.0774 (−0.4878, −0.1839)
RTW dummy 2.7542 0.7052 (1.3655, 4.1407) 2.8787 0.7048 (1.4880, 4.2813)
SBSI 0.1371 0.0524 (0.0350, 0.2388) 0.1447 0.0521 (0.0428, 0.2480)
μ −1.0142 0.0683 (−0.8823, −1.1479) −1.0020 0.0694 (−1.1375, −0.8710)

CI: credible interval; PCT: percentage; SBSI: small business survival index.
Number of iterations is 30,000. We burn in the first 20% draws.

Table 21
Posterior model probabilities for the empirical data.

Model/Prior L = 4, p = 12, ξ = 1 L ¼ 8; p ¼ 120; ξ ¼
ffiffiffi
3

p

SDEM with 2 lags 0.0000 0.0000
SAR 1.0000 1.0000
MESS 0.0000 0.0000
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three models suggest a strong spatial interaction effect. The estimated
coefficients of the RTWdummy are all positive and significant, implying
that the RTW laws do have a positive effect on manufacturing employ-
ment, other things equal. Tables 17–18 summarize Bayesian estimation
results for the SDEM model. We rely on the Bayesian 95% credible
intervals to decide whether the estimated coefficients are signifi-
cantly different from zero or not. The Bayesian estimates of ρ are
above 0.74 and significantly different from zero for both tight and
moderate priors, implying a strong spatial dependent pattern. The
Bayesian estimates of the RTW dummy coefficient are positive and
significantly different from zero, indicating that the RTW law
tends to increase manufacturing employment, all else equal. How-
ever, the Bayesian estimates of high order coefficients of the RTW
dummy are not significantly different from zero, suggesting that
the average RTW status of a county's first or second order neighbor
might not have a strong impact on the manufacturing employment of
that county.35 Moreover, with a moderate prior the Bayesian estimates
are closer to theML estimates. Tables 19 and 20 summarize theBayesian
estimation results of the SAR model and the MESS model. We still get
strong and significant spatial interaction effects. The estimated coeffi-
cients of the RTW dummy are positive and significant for the two
models. Again, withmoderate priors, the Bayesian estimates are similar
to the ML estimates.

Finally, Table 21 gives the posterior probabilities for the three
models. With a tight or moderate prior, the posterior probabilities
of the SAR model are much higher than those of the SDEM model
and MESS model. Therefore, a geometrical decline pattern of spatial
externalities is more compatible with the data set.
7. Conclusion

In this paper we investigate a finite SDEM model and consider the
Bayesian MCMC estimation of the model with a smoothness prior. We
study also the corresponding Bayesian model selection procedure for
the SDEM model, the SAR model and the MESS model. We derive ex-
pressions of marginal likelihoods of the three models, which greatly
simplify the model selection procedure. Simulation results suggest
35 This is consistent with the ML estimates. In particular, the estimated coefficients of
Wn × RTW dummy and Wn

2 × RTW dummy are not statistically significant in Table 16.
that the Bayesian estimates of high order lag coefficients are more
precise than the ML estimates. When the data is generated with a
general declining pattern or a unimodal pattern for lag coefficients,
the SDEM model can better capture the pattern than the SAR and
the MESS models in most cases.

Using the dataset of Kalenkoski and Lacombe (2006), the SDEM
model with an informative smoothness prior, the SAR model and
the MESS model and corresponding Bayesian model selection proce-
dure are applied to study the relationship between RTW laws and
manufacturing employment. The empirical results show a positive re-
lationship between RTW laws and manufacturing employment in
each of the three models. The model selection results suggest that,
among the three models, the SAR model would be the one to capture
the pattern of spatial externalities for the data set.

Appendix A. Analytical integration for the marginal likelihood of
the SDEM model with informative smoothness prior

Recall that the marginal likelihood for the SDEM model is

f YnjMSDEMð Þ ¼ ∫π γjσ2
� �

π σ2
� �

π ρð Þf Ynjγ;ρ;σ
2

� �
dγdσ2dρ

¼ C0
SDEM∫jRn ρð Þjσ− nþ mþ1ð Þkþ1þaþ2½ �

� exp
�
− 1

2σ2 Yn ρð Þ−Zn ρð Þγð Þ′ Yn ρð Þ−Zn ρð Þγð Þ
h i

þ γ−γð Þ′M2 γ−γð Þ þ b
�
dγdσ2dρ:

The first step is to integrate out γ. We simplify the term Yn ρð Þ−ð
Zn ρð ÞγÞ′ Yn ρð Þ−Zn ρð Þγð Þ þ γ−γð Þ′M2 γ−γð Þ. Note that

Yn ρð Þ−Zn ρð Þγð Þ′ Yn ρð Þ−Zn ρð Þγð Þ ¼ Yn ρð Þ−Zn ρð Þγ̂ ρð Þð Þ′ Yn ρð Þ−Zn ρð Þγ̂ ρð Þð Þ
þ γ−γ̂ ρð Þð Þ′Z′

n ρð ÞZn ρð Þ γ−γ̂ ρð Þð Þ
ðA:1Þ

where γ̂ ρð Þ ¼ Z′
n ρð ÞZn ρð Þ

� �−1
Z′

n ρð ÞYn ρð Þ. Let Q1 ρð Þ ¼ Yn ρð Þ−ð

Zn ρð Þγ̂ ρð ÞÞ′ Yn ρð Þ−Zn ρð Þγ̂ ρð Þð Þ, then we have

Yn ρð Þ−Zn ρð Þγð Þ′ Yn ρð Þ−Zn ρð Þγð Þ þ γ−γð Þ′M2 γ−γð Þ
¼ Q1 ρð Þ þ γ−γ̂ ρð Þð Þ′ Z′

n ρð ÞZn ρð Þ γ−γ̂ ρð Þð Þ þ γ−γð Þ′M2 γ−γð Þ:
ðA:2Þ

Moreover, let A1 ρð Þ ¼ Z′
n ρð ÞZn ρð Þ þM2 and γ̃ ρð Þ ¼ A1 ρð Þ−1

Z′
n ρð ÞZn ρð Þγ̂ ρð Þ þM2γ

� �
,

γ−γ̂ ρð Þð Þ′Z′
n ρð ÞZn ρð Þ γ−γ̂ ρð Þð Þ þ γ−γð Þ′M2 γ−γð Þ

¼ ðγ− γ̃ ρð ÞÞ′A1 ρð Þ γ−γ̂ ρð Þð Þ þ Q2 ρð Þ þ Q3 ρð Þ
ðA:3Þ
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withQ2 ρð Þ ¼ γ̂ ρð Þ′Z′
n ρð ÞZn ρð Þγ̂ ρð Þ− γ̃ ′ ρð ÞZ′

n ρð ÞZn ρð Þ γ̃ ρð Þ andQ3 ρð Þ ¼
γ ′M2γ− γ̃ ′ ρð ÞM2 γ̃ ρð Þ. According to Eqs. (A.1)–(A.3), we have

Yn ρð Þ−Zn ρð Þγð Þ′ Yn ρð Þ−Zn ρð Þγð Þ þ γ−γð Þ′M2 γ−γð Þ
¼ Q1 ρð Þ þ Q2 ρð Þ þ Q3 ρð Þ þ γ− γ̃ ρð Þ

� �
′
A1 ρð Þ γ− γ̃ ρð Þ

� �
:

ðA:4Þ

Therefore, using the property of multivariate normal pdf to inte-
grate out γ, we get

f YnjMSDEMð Þ ¼ C1
SDEM∫ρ

A1 ρð Þj j−
1
2 Rn ρð Þj j

∫
σ2σ

− nþaþ2ð Þ
exp − 1

2σ2 bþ Q1 ρð Þ þ Q2 ρð Þ þ Q3 ρð Þð Þ
� �

dσ2dρ;

ðA:5Þ

with C1
SDEM ¼ 2πð Þ−

n
2 � L− mþ1ð Þk � Rdj j � p−1 � 2τnð Þ−1 �

b
2

a
2

Γ a
2ð Þ
.

The second step is to integrate outσ2. Let υ ¼ Q ρð Þ
2σ2 ¼ bþQ1 ρð ÞþQ2 ρð ÞþQ3 ρð Þ

2σ2 ,
then

σ2 ¼ Q ρð Þ 2υð Þ−1

dσ2

dυ
¼ −Q ρð Þ 2υ2

� �−1
:

ðA:6Þ

Combine Eqs. (A.5) and (A.6),

f YnjMSDEMð Þ ¼ C1
SDEM � ∫

ρ
A1 ρð Þj j−

1
2 Rn ρð Þj j∫υQ ρð Þ−

nþa
2 2−nþa

2 υ−nþa−2
2 exp −υð Þdυdρ:

ðA:7Þ

Using the property of the inverse gamma pdf, we have

f YnjMSDEMð Þ ¼ C1
SDEM∫ρ

Rn ρð Þj j A1 ρð Þj j−
1
2Q ρð Þ−

nþa
2 dρ: ðA:8Þ

with CSDEM ¼ C1
SDEM � 2

nþa
2 � Γ nþa

2

� �
:
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